SUSY constraints, relic density, and very early universe

  • A. Arbey
  • F. MahmoudiEmail author
Open Access


The sensitivity of the lightest supersymmetric particle relic density calculation to different cosmological scenarios is discussed. In particular, we investigate the effects of modifications of the expansion rate and of the entropy content in the Early Universe. These effects, even with no observational consequences, can still drastically modify the relic density constraints on the SUSY parameter space. We suggest general parametrizations to evaluate such effects, and derive also constraints from Big-Bang nucleosynthesis. We show that using the relic density in the context of supersymmetric constraints requires a clear statement of the underlying cosmological model assumptions to avoid misinterpretations. On the other hand, we note that combining the relic density calculation with the eventual future discoveries at the LHC will hopefully shed light on the Very Early Universe properties.


Beyond Standard Model Supersymmetric Standard Model Cosmology of Theories beyond the SM Rare Decays 


  1. [1]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    L.M. Krauss, New constraints on Ino masses from cosmology. 1. Supersymmetric inos, Nucl. Phys. B 227 (1983) 556 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys. B 310 (1988) 693 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Battaglia et al., Updated post-WMAP benchmarks for supersymmetry, Eur. Phys. J. C 33 (2004) 273 [hep-ph/0306219] [SPIRES].ADSGoogle Scholar
  7. [7]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [SPIRES].CrossRefGoogle Scholar
  8. [8]
    B. Altunkaynak, M. Holmes and B.D. Nelson, Solving the LHC inverse problem with dark matter observations, JHEP 10 (2008) 013 [arXiv:0804.2899] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The Impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Kamionkowski and M.S. Turner, Thermal relics: do we know their abundances?, Phys. Rev. D 42 (1990) 3310 [SPIRES].ADSGoogle Scholar
  11. [11]
    F. Rosati, Quintessential enhancement of dark matter abundance, Phys. Lett. B 570 (2003) 5 [hep-ph/0302159] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    D. Comelli, M. Pietroni and A. Riotto, Dark energy and dark matter, Phys. Lett. B 571 (2003) 115 [hep-ph/0302080] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    P. Salati, Quintessence and the relic density of neutralinos, Phys. Lett. B 571 (2003) 121 [astro-ph/0207396] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Profumo and P. Ullio, SUSY dark matter and quintessence, JCAP 11 (2003) 006 [hep-ph/0309220] [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Catena, N. Fornengo, A. Masiero, M. Pietroni and F. Rosati, Dark matter relic abundance and scalar-tensor dark energy, Phys. Rev. D 70 (2004) 063519 [astro-ph/0403614] [SPIRES].ADSGoogle Scholar
  16. [16]
    C. Pallis, Quintessential kination and cold dark matter abundance, JCAP 10 (2005) 015 [hep-ph/0503080] [SPIRES].ADSGoogle Scholar
  17. [17]
    C. Pallis, Kination dominated reheating and cold dark matter abundance, Nucl. Phys. B 751 (2006) 129 [hep-ph/0510234] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    D.J.H. Chung, L.L. Everett, K. Kong and K.T. Matchev, Connecting LHC, ILC and quintessence, JHEP 10 (2007) 016 [arXiv:0706.2375] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    R.J. Scherrer and M.S. Turner, Decaying particles do not heat up the universe, Phys. Rev. D 31 (1985) 681 [SPIRES].ADSGoogle Scholar
  20. [20]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [SPIRES].ADSGoogle Scholar
  22. [22]
    N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072] [SPIRES].ADSGoogle Scholar
  23. [23]
    C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys. 21 (2004) 689 [hep-ph/0402033] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [SPIRES].ADSGoogle Scholar
  25. [25]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Drees, H. Iminniyaz and M. Kakizaki, Constraints on the very early universe from thermal WIMP dark matter, Phys. Rev. D 76 (2007) 103524 [arXiv:0704.1590] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Arbey and F. Mahmoudi, SUSY constraints from relic density: high sensitivity to pre-BBN expansion rate, Phys. Lett. B 669 (2008) 46 [arXiv:0803.0741] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late-time entropy production, Phys. Rev. Lett. 82 (1999) 4168 [astro-ph/9811437] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV-scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [SPIRES].ADSGoogle Scholar
  31. [31]
    K. Ichikawa, M. Kawasaki and F. Takahashi, The oscillation effects on thermalization of the neutrinos in the universe with low reheating temperature, Phys. Rev. D 72 (2005) 043522 [astro-ph/0505395] [SPIRES].ADSGoogle Scholar
  32. [32]
    L. Kawano, Early universe 2. Primordial nucleosynthesis the computer way, FERMILAB-PUB-92-04-A.Google Scholar
  33. [33]
    C. Angulo et al., A compilation of charged-particle induced thermonuclear reaction rates, Nucl. Phys. A 656 (1999) 3 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  35. [35]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK*γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    A. Arbey and F. Mahmoudi, SuperIso relic: a program for calculating relic density and flavor physics observables in supersymmetry, Comput. Phys. Commun. 181 (2010) 1277 [arXiv:0906.0369] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    B.C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  40. [40]
    B.C. Allanach, G. Bélanger, F. Boudjema and A. Pukhov, Requirements on collider data to match the precision of WMAP on supersymmetric dark matter, JHEP 12 (2004) 020 [hep-ph/0410091] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].ADSGoogle Scholar
  42. [42]
    L. Roszkowski, R. Ruiz de Austri and R. Trotta, Efficient reconstruction of CMSSM parameters from LHC data — A case study, arXiv:0907.0594 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1VilleurbanneFrance
  3. 3.CRAL, Observatoire de LyonSaint-Genis-LavalFrance
  4. 4.CNRS, UMR 5574, ENS de LyonLyonFrance
  5. 5.Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, BP 10448Clermont-FerrandFrance

Personalised recommendations