Lepton flavour violation in the MSSM

  • Jennifer Girrbach
  • Susanne Mertens
  • Ulrich Nierste
  • Sören Wiesenfeldt
Article

Abstract

We derive new constraints on the quantities δXYij, X, Y = L,R, which parametrise the flavour-off-diagonal terms of the charged slepton mass matrix in the MSSM. Considering mass and anomalous magnetic moment of the electron we obtain the bound \( \left| {\delta_{LL}^{13}\delta_{RR}^{{13}}} \right| \lesssim 0.{1} \) for tan β = 50, which involves the poorly constrained element δRR13. We improve the predictions for the decays τμγ, τ and μ by including two-loop corrections which are enhanced if tan β is large. The finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is derived and applied to the charged-Higgs-lepton vertex. We find that the experimental bound on BR(τ) severely limits the size of the MSSM loop correction to the PMNS element Ue3, which is important for the proper interpretation of a future Ue3 measurement. Subsequently we confront our new values for δLLij with a GUT analysis. Further, we include the effects of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of the first two generations. If universal supersymmetry breaking occurs above the GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings tightly constrained by μ.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    F. Gianotti, Searches for supersymmetry at high-energy colliders: the past, the present and the future, New J. Phys. 4 (2002) 63 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004) [SPIRES].Google Scholar
  3. [3]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].ADSGoogle Scholar
  4. [4]
    M.S. Carena, S. Pokorski and C.E.M. Wagner, On the unification of couplings in the minimal supersymmetric Standard Model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [SPIRES].ADSGoogle Scholar
  6. [6]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  9. [9]
    S.F. King, Neutrino mass and flavour models, AIP Conf. Proc. 1200 (2010) 103 [arXiv:0909.2969] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    I. Masina and C.A. Savoy, Sleptonarium (constraints on the CP and flavour pattern of scalar lepton masses), Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283] [SPIRES].ADSGoogle Scholar
  12. [12]
    P. Paradisi, Constraints on SUSY lepton flavour violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    F. Gabbiani and A. Masiero, FCNC in generalized supersymmetric theories, Nucl. Phys. B 322 (1989) 235 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [SPIRES].ADSGoogle Scholar
  18. [18]
    L. Hofer, U. Nierste and D. Scherer, Resummation of tan β-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    A. Crivellin and U. Nierste, Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices, Phys. Rev. D 79 (2009) 035018 [arXiv:0810.1613] [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Crivellin and U. Nierste, Chirally enhanced corrections to FCNC processes in the generic MSSM, arXiv:0908.4404 [SPIRES].
  21. [21]
    A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s, B 0 d, sμ + μ and BX s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, B-meson observables in the maximally CP-violating MSSM with minimal flavour violation, Phys. Rev. D 76 (2007) 115011 [arXiv:0708.2079] [SPIRES].ADSGoogle Scholar
  23. [23]
    J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: a beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Masiero, P. Paradisi and R. Petronzio, Probing new physics through μe universality in Kℓν, Phys. Rev. D 74 (2006) 011701 [hep-ph/0511289] [SPIRES].ADSGoogle Scholar
  25. [25]
    F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    A. Crivellin and J. Girrbach, Constraining the MSSM sfermion mass matrices with light fermion masses, Phys. Rev. D 81 (2010) 076001 [1002.0227] [SPIRES].ADSGoogle Scholar
  27. [27]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    C. Hamzaoui, M. Pospelov and M. Toharia, Higgs-mediated FCNC in supersymmetric models with large tan β, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [SPIRES].ADSGoogle Scholar
  29. [29]
    K.S. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    J. Girrbach and U. Nierste, A critical look at Γ (K) /Γ (Kμν), in preparation.Google Scholar
  32. [32]
    A. Masiero, P. Paradisi and R. Petronzio, Anatomy and phenomenology of the lepton flavor universality in SUSY theories, JHEP 11 (2008) 042 [arXiv:0807.4721] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    J. Ellis, S. Lola and M. Raidal, Supersymmetric grand unification and lepton universality in Kℓν decays, Nucl. Phys. B 812 (2009) 128 [arXiv:0809.5211] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Revised value of the eighth-order QED contribution to the anomalous magnetic moment of the electron, Phys. Rev. D 77 (2008) 053012 [arXiv:0712.2607] [SPIRES].ADSGoogle Scholar
  36. [36]
    P. Clade et al., Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett. 96 (2006) 033001 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Rosiek, Complete set of Feynman rules for the MSSM — erratum, hep-ph/9511250 [SPIRES].
  39. [39]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [SPIRES].ADSGoogle Scholar
  40. [40]
    M. Ciuchini et al., Soft SUSY breaking grand unification: leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  42. [42]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].ADSGoogle Scholar
  43. [43]
    Comparison of SUSY spectrum generators: mass spectra, relic density, etc, http://cern.ch/kraml/comparison/.
  44. [44]
    G. Bélanger, S. Kraml and A. Pukhov, Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP, Phys. Rev. D 72 (2005) 015003 [hep-ph/0502079] [SPIRES].ADSGoogle Scholar
  45. [45]
    B.C. Allanach, S. Kraml and W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools, JHEP 03 (2003) 016 [hep-ph/0302102] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    A. Masiero, S.K. VemPati and O. Vives, Seesaw and lepton flavour violation in SUSY SO(10), Nucl. Phys. B 649 (2003) 189 [hep-ph/0209303] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    L. Calibbi, A. Faccia, A. Masiero and S.K. VemPati, Lepton flavour violation from SUSY-GUTs: where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [SPIRES].ADSGoogle Scholar
  48. [48]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μeγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    P. Paradisi, Higgs-mediated τμ and τe transitions in II Higgs doublet model and supersymmetry, JHEP 02 (2006) 050 [hep-ph/0508054] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    P. Paradisi, Higgs-mediated eμ transitions in II Higgs doublet model and supersymmetry, JHEP 08 (2006) 047 [hep-ph/0601100] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  54. [54]
    H. Georgi, The state of the art — gauge theories (talk), AIP Conf. Proc. 23 (1975) 575 [SPIRES].ADSGoogle Scholar
  55. [55]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    A. Masiero, S.K. VemPati and O. Vives, Massive neutrinos and flavour violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].ADSGoogle Scholar
  58. [58]
    D.I. Kazakov, Supersymmetry in particle physics: the renormalization group viewpoint, Phys. Rept. 344 (2001) 309 [hep-ph/0001257] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  59. [59]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    F. Borzumati and A. Masiero, Large muon- and electron-number nonconservation in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for non-degenerate see-saw scales, Phys. Lett. B 538 (2002) 87 [hep-ph/0203233] [SPIRES].ADSGoogle Scholar
  64. [64]
    T. Mori, MEG: the experiment to search for μ, Nucl. Phys. (Proc. Suppl.) 169 (2007) 166 [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    J.R. Ellis and M.K. Gaillard, Fermion masses and Higgs representations in SU(5), Phys. Lett. B 88 (1979) 315 [SPIRES].ADSGoogle Scholar
  66. [66]
    B. Bajc, P. Fileviez Perez and G. Senjanović, Proton decay in minimal supersymmetric SU(5), Phys. Rev. D 66 (2002) 075005 [hep-ph/0204311] [SPIRES].ADSGoogle Scholar
  67. [67]
    D. Emmanuel-Costa and S. Wiesenfeldt, Proton decay in a consistent supersymmetric SU(5) GUT model, Nucl. Phys. B 661 (2003) 62 [hep-ph/0302272] [SPIRES].ADSGoogle Scholar
  68. [68]
    Z. Berezhiani, Z. Tavartkiladze and M. Vysotsky, D = 5 operators in SUSY GUT: fermion masses versus proton decay, hep-ph/9809301 [SPIRES].
  69. [69]
    B. Bajc, P. Fileviez Perez and G. Senjanović, Minimal supersymmetric SU(5) theory and proton decay: where do we stand?, hep-ph/0210374 [SPIRES].
  70. [70]
    F. Borzumati, S. Mishima and T. Yamashita, Non-CKM induced flavor violation in ’minimal’ SUSY SU(5) models, arXiv:0705.2664 [SPIRES].
  71. [71]
    N. Arkani-Hamed, H.-C. Cheng and L.J. Hall, Flavor mixing signals for realistic supersymmetric unification, Phys. Rev. D 53 (1996) 413 [hep-ph/9508288] [SPIRES].ADSGoogle Scholar
  72. [72]
    J. Hisano, D. Nomura, Y. Okada, Y. Shimizu and M. Tanaka, Enhancement of μeγ in the supersymmetric SU(5) GUT at large tan β, Phys. Rev. D 58 (1998) 116010 [hep-ph/9805367] [SPIRES].ADSGoogle Scholar
  73. [73]
    S. Baek, T. Goto, Y. Okada and K.-I. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [SPIRES].ADSGoogle Scholar
  74. [74]
    P. Ko, J.-H. Park and M. Yamaguchi, Sflavor mixing map viewed from a high scale in supersymmetric SU(5), JHEP 11 (2008) 051 [arXiv:0809.2784] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    S. Trine, S. Westhoff and S. Wiesenfeldt, Probing Yukawa unification with K and B mixing, JHEP 08 (2009) 002 [arXiv:0904.0378] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: seesaw mechanism and violation of flavour and CP, arXiv:0903.2793 [SPIRES].
  77. [77]
    F. Borzumati and T. Yamashita, The nrMSSU(5) and universality of soft masses, AIP Conf. Proc. 1200 (2010) 916 [arXiv:0910.0372] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Jennifer Girrbach
    • 1
  • Susanne Mertens
    • 1
    • 2
  • Ulrich Nierste
    • 1
  • Sören Wiesenfeldt
    • 1
    • 3
  1. 1.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of TechnologyUniversität KarlsruheKarlsruheGermany
  2. 2.Institut für Experimentelle Kernphysik, Karlsruhe Institute of TechnologyUniversität KarlsruheKarlsruheGermany
  3. 3.Helmholtz AssociationBerlinGermany

Personalised recommendations