Advertisement

String instanton in AdS 4 × CP 3

  • Alessandra Cagnazzo
  • Dmitri SorokinEmail author
  • Linus Wulff
Article

Abstract

We study the string instanton wrapping a non-trivial two-cycle in CP 3 of the type IIA string theory compactified on AdS 4 × CP 3 superspace and find that it has twelve fermionic zero modes associated with 1/2 of the supersymmetry of the background thus manifesting that this classical instanton configuration is 1/2 BPS.

Keywords

Superstrings and Heterotic Strings Solitons Monopoles and Instantons AdSCFT Correspondence M-Theory 

References

  1. [1]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Bagger and N. Lambert, Comments On Multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4/CFT 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    D.P. Sorokin, V.I. Tkach, and D.V. Volkov, Kaluza-Klein theories and spontaneous compactification mechanisms of extra space dimensions, in Proceedings of the Third Seminar on Quantum Gravity, Moscow USSR, 23–25 October 1984, pg. 376.Google Scholar
  10. [10]
    D.P. Sorokin, V.I. Tkach and D.V. Volkov, On the relationship between compactified vacua of D = 11 and D = 10 supergravities, Phys. Lett. B 161 (1985) 301 [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    R.R. Metsaev and A.A. Tseytlin, Supersymmetric D3 brane action in AdS 5 × S 5, Phys. Lett. B 436 (1998) 281 [hep-th/9806095] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    I.A. Bandos, Superembedding approach to superstring in AdS 5 × S ∗ 5 superspace, arXiv:0812.0257 [SPIRES].
  13. [13]
    J. Gomis, D. Sorokin and L. Wulff, The complete AdS 4 × CP(3) superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in AdS 4 × CP(3) superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    B. Stefanski, jr, Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    P. Fré and P.A. Grassi, Pure Spinor Formalism for Osp(N|4) backgrounds, arXiv:0807.0044 [SPIRES].
  18. [18]
    G. Bonelli, P.A. Grassi and H. Safaai, Exploring Pure Spinor String Theory on AdS 4 × CP 3, JHEP 10 (2008) 085 [arXiv:0808.1051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    R. D’Auria, P. Fré, P.A. Grassi and M. Trigiante, Superstrings on AdS 4 × CP 3 from Supergravity, Phys. Rev. D 79 (2009) 086001 [arXiv:0808.1282] [SPIRES].ADSGoogle Scholar
  20. [20]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M. Bianchi and M. Samsonyan, Notes on unoriented D-brane instantons, Int. J. Mod. Phys. A 24 (2009) 5737 [arXiv:0909.2173] [SPIRES].ADSGoogle Scholar
  23. [23]
    E. Bergshoeff, R. Kallosh, A.-K. Kashani-Poor, D. Sorokin and A. Tomasiello, An index for the Dirac operator on D3 branes with background fluxes, JHEP 10 (2005) 102 [hep-th/0507069] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and N = 6 Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    K. Zarembo, Worldsheet spectrum in AdS 4/CFT 3 correspondence, JHEP 04 (2009) 135 [arXiv:0903.1747] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    P. Sundin, On the worldsheet theory of the type IIA AdS 4 × CP(3) superstring, JHEP 04 (2010) 014 [arXiv:0909.0697] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    A.A. Tseytlin, On dilaton dependence of type-II superstring action, Class. Quant. Grav. 13 (1996) L81 [hep-th/9601109] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T-duality in the Green-Schwarz Formalism and the Massless/Massive IIA Duality Map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [SPIRES].ADSGoogle Scholar
  30. [30]
    A.M. Polyakov and A.A. Belavin, Metastable States of Two-Dimensional Isotropic Ferromagnets, JETP Lett. 22 (1975) 245 [SPIRES].ADSGoogle Scholar
  31. [31]
    V.L. Golo and A.M. Perelomov, Solution of the Duality Equations for the Two-Dimensional SU(N) Invariant Chiral Model, Phys. Lett. B 79 (1978) 112 [SPIRES].ADSGoogle Scholar
  32. [32]
    V.L. Golo and A.M. Perelomov, Few remarks on chiral theories with sophisticated topology, Lett. Math. Phys. 2 (1978) 477 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear σ-models with Instantons, Nucl. Phys. B 146 (1978) 63 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P. Di Vecchia and S. Ferrara, Classical Solutions in Two-Dimensional Supersymmetric Field Theories, Nucl. Phys. B 130 (1977) 93 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-Dimensional σ-models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116 (1984) 103 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    A.M. Perelomov, Chiral Models: Geometrical Aspects, Phys. Rept. 146 (1987) 135 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    A.M. Perelomov, Supersymmetric Chiral Models: Geometrical Aspects, Phys. Rept. 174 (1989) 229 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    C.N. Pope and N.P. Warner, An SU(4) invariant compactification of d = 11 supergravity on a stretched seven sphere, Phys. Lett. B 150 (1985) 352 [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    X.G. Wen and E. Witten, World sheet instantons and the Peccei-Quinn symmetry, Phys. Lett. B 166 (1986) 397 [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys. B 278 (1986) 769 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    Y. Fujii and K. Yamagishi, Killing spinors on spheres and hyperbolic manifolds, J. Math. Phys. 27 (1986) 979 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  43. [43]
    A.A. Abrikosov, Jr., Dirac operator on the Riemann sphere, hep-th/0212134 [SPIRES].
  44. [44]
    H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on S n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S. Deguchi and K. Kitsukawa, Charge quantization conditions based on the Atiyah-Singer index theorem, Prog. Theor. Phys. 115 (2006) 1137 [hep-th/0512063] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  46. [46]
    J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring, Nucl. Phys. B 278 (1986) 147 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, κ-symmetry, supersymmetry and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    P. Claus and R. Kallosh, Superisometries of the AdS × S superspace, JHEP 03 (1999) 014 [hep-th/9812087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [SPIRES].ADSGoogle Scholar
  51. [51]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [SPIRES].ADSGoogle Scholar
  52. [52]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [SPIRES].CrossRefMathSciNetGoogle Scholar
  53. [53]
    A. D’Adda, A.C. Davis, P. Di Vecchia and P. Salomonson, An Effective Action For The Supersymmetric Cp N−1 Model, Nucl. Phys. B 222 (1983) 45 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    P.S. Howe and E. Sezgin, The supermembrane revisited, Class. Quant. Grav. 22 (2005) 2167 [hep-th/0412245] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Alessandra Cagnazzo
    • 1
    • 2
  • Dmitri Sorokin
    • 2
    Email author
  • Linus Wulff
    • 2
  1. 1.Dipartimento di Fisica “Galileo Galilei”Università degli Studi di PadovaPadovaItalia
  2. 2.INFN, Sezione di Padova35131Italia

Personalised recommendations