Advertisement

Strings on semisymmetric superspaces

  • K. Zarembo
Open Access
Article

Abstract

Several string backgrounds which arise in the AdS/CFT correspondence are described by integrable sigma-models. Their target space is always a \( {\mathbb{Z}_4} \) supercoset (a semi-symmetric superspace). Here we list all semi-symmetric cosets which have zero beta function and central charge c ≤ 26 at one loop in perturbation theory.

Keywords

Sigma Models AdS-CFT Correspondence Integrable Field Theories 

References

  1. [1]
    V.V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funkts. Anal. Prilozh. 17 (1983) 46 [Funct. Anal. Appl. 17 (1983) 200].MathSciNetGoogle Scholar
  2. [2]
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [SPIRES].CrossRefMathSciNetGoogle Scholar
  3. [3]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    R. Roiban and W. Siegel, Superstrings on AdS 5 × S 5 supertwistor space, JHEP 11 (2000) 024 [hep-th/0010104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    H. Eichenherr and M. Forger, On the dual symmetry of the nonlinear sigma models, Nucl. Phys. B 155 (1979) 381 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A.M. Polyakov, Interaction of Goldstone particles in two-dimensions. Applications to ferromagnets and massive Yang-Mills fields, Phys. Lett. B 59 (1975) 79 [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    A.M. Polyakov, Conformal fixed points of unidentified gauge theories, Mod. Phys. Lett. A 19 (2004) 1649 [hep-th/0405106] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    I. Adam, A. Dekel, L. Mazzucato and Y. Oz, Integrability of type-II superstrings on Ramond-Ramond backgrounds in various dimensions, JHEP 06 (2007) 085 [hep-th/0702083] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [SPIRES].ADSGoogle Scholar
  11. [11]
    J. Rahmfeld and A. Rajaraman, The GS string action on AdS 3 × S 3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    J. Park and S.-J. Rey, Green-Schwarz superstring on AdS 3 × S 3, JHEP 01 (1999) 001 [hep-th/9812062] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    J.-G. Zhou, Super 0-brane and GS superstring actions on AdS 2 × S 2, Nucl. Phys. B 559 (1999) 92 [hep-th/9906013] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R.R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS 3 × S 3 Ramond-Ramond background in light-cone gauge, J. Math. Phys. 42 (2001) 2987 [hep-th/0011191] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    H.L. Verlinde, Superstrings on AdS 2 and superconformal matrix quantum mechanics, hep-th/0403024 [SPIRES].
  16. [16]
    B. Chen, Y.-L. He, P. Zhang and X.-C. Song, Flat currents of the Green-Schwarz superstrings in AdS 5 × S 1 and AdS 3 × S 3 backgrounds, Phys. Rev. D 71 (2005) 086007 [hep-th/0503089] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    M. Hatsuda and Y. Michishita, Kappa symmetric OSp(2|2) WZNW model, JHEP 06 (2008) 049 [arXiv:0804.1831] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    B. Stefanski jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    A. Babichenko, B. Stefanski jr. and K. Zarembo, Integrability and the AdS 3/CFT 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [SPIRES].CrossRefMathSciNetGoogle Scholar
  22. [22]
    D. Kagan and C.A.S. Young, Conformal σ-models on supercoset targets, Nucl. Phys. B 745 (2006) 109 [hep-th/0512250] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    V.G.M. Puletti, Operator product expansion for pure spinor superstring on AdS 5 × S 5, JHEP 10 (2006) 057 [hep-th/0607076] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    L. Mazzucato and B.C. Vallilo, On the non-renormalization of the AdS radius, JHEP 09 (2009) 056 [arXiv:0906.4572] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S. Carlip, Heterotic string path integrals with the Green-Schwarz covariant action, Nucl. Phys. B 284 (1987) 365 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    R. Kallosh and A.Y. Morozov, Green-Schwarz action and loop calculations for superstring, Int. J. Mod. Phys. A 3 (1988) 1943 [Sov. Phys. JETP 67 (1988) 1540] [Zh. Eksp. Teor. Fiz. 94N8 (1988) 42] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    P.B. Wiegmann, Extrinsic geometry of superstrings, Nucl. Phys. B 323 (1989) 330 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M. Bershadsky, S. Zhukov and A. Vaintrob, PSL(n|n) σ-model as a conformal field theory, Nucl. Phys. B 559 (1999) 205 [hep-th/9902180] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear σ-models in two dimensions, Nucl. Phys. B 613 (2001) 409 [hep-th/0106124] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Babichenko, Conformal invariance and quantum integrability of σ-models on symmetric superspaces, Phys. Lett. B 648 (2007) 254 [hep-th/0611214] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [SPIRES].MATHCrossRefADSGoogle Scholar
  33. [33]
    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [SPIRES].
  34. [34]
    U. Kraemmer and A. Rebhan, Anomalous anomalies in the Carlip-Kallosh quantization of the Green-Schwarz superstring, Phys. Lett. B 236 (1990) 255 [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    F. Bastianelli, P. van Nieuwenhuizen and A. Van Proeyen, Superstring anomalies in the semilight cone gauge, Phys. Lett. B 253 (1991) 67 [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Porrati and P. van Nieuwenhuizen, Absence of world sheet and space-time anomalies in the semicovariantly quantized heterotic string, Phys. Lett. B 273 (1991) 47 [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Bellucci and R.N. Oerter, Weyl invariance of the Green-Schwarz heterotic sigma model, Nucl. Phys. B 363 (1991) 573 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    S.K. Ashok, R. Benichou and J. Troost, Conformal current algebra in two dimensions, JHEP 06 (2009) 017 [arXiv:0903.4277] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    B. Stefanski jr., Landau-Lifshitz σ-models, fermions and the AdS/CFT correspondence, JHEP 07 (2007) 009 [arXiv:0704.1460] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    J. Gomis, D. Sorokin and L. Wulff, The complete AdS 4 × CP 3 superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    I. Pesando, The GS type IIB superstring action on AdS 3 × S 3 × T 4, JHEP 02 (1999) 007 [hep-th/9809145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    C. Candu, V. Mitev, T. Quella, H. Saleur and V. Schomerus, The σ-model on complex projective superspaces, JHEP 02 (2010) 015 [arXiv:0908.0878] [SPIRES].CrossRefGoogle Scholar
  43. [43]
    C. Candu, T. Creutzig, V. Mitev and V. Schomerus, Cohomological reduction of σ-models, 1001.1344 [SPIRES].
  44. [44]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  46. [46]
    N. Gromov and P. Vieira, The AdS 4/CFT 3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  48. [48]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    N. Gromov and P. Vieira, The all loop AdS 4/CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].MathSciNetGoogle Scholar
  53. [53]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [SPIRES].MATHCrossRefADSGoogle Scholar
  54. [54]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    D. Bombardelli, D. Fioravanti and R. Tateo, TBA and Y-system for planar AdS 4/CFT 3, Nucl. Phys. B 834 (2010) 543 [arXiv:0912.4715] [SPIRES].ADSGoogle Scholar
  56. [56]
    N. Gromov and F. Levkovich-Maslyuk, Y-system, TBA and quasi-classical strings in AdS 4 × CP 3, arXiv:0912.4911 [SPIRES].
  57. [57]
    H. Stenzel, Über die Darstellbarkeit einer Matrix als Produkt von zwei symmetrischer Matrizen, als Produkt von zwei alternierenden Matrizen und als Produkt von einer symmetrischen und einer alternierenden Matrix (in German), Math. Z. 15 (1922) 1.CrossRefMathSciNetGoogle Scholar
  58. [58]
    K.D. Ikramov and H. Fassbender, On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices, J. Math. Sci. 157 (2009) 697 [Zap. Nauchn. Sem. POMI 359 (2008) 45].MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.CNRS — Laboratoire de Physique ThéoriqueÉcole Normale SupérieureParisFrance
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations