Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study

Abstract

We carry out a detailed exploration of the deformations of rank-two five-dimensional superconformal field theories (SCFTs) \( {\mathcal{T}}_{\mathbf{X}} \), which are geometrically engineered by M-theory on the space transverse to isolated toric Calabi-Yau (CY) threefold singularities X. Deformations of 5d \( \mathcal{N} \) = 1 SCFTs can lead to “gauge-theory phases,” but also to “non-gauge-theoretic phases,” which have no known Lagrangian interpretation. In previous work, a technique relying on fiberwise M-theory/type IIA duality was developed to associate a type IIA background to any resolution of X which admits a suitable projection of its toric diagram. The type IIA background consists of an A-type ALE space fibered over the real line, with stacks of coincident D6-branes wrapping 2-cycles in the ALE resolution. In this work, we combine that technique with some elementary ideas from graph theory, to analyze mass deformations of \( {\mathcal{T}}_{\mathbf{X}} \) when X is a isolated toric CY3 singularity of rank-two (that is, it has two compact divisors). We explicitly derive type IIA descriptions of all isolated rank-two CY3 toric singularities. We also comment on the renormalization group flows in the extended parameter spaces of these theories, which frequently relate distinct geometries by flowing to theories with lower flavor symmetries, including those that describe non-gauge-theoretic phases.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett.B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys.B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP01 (1998) 002 [hep-th/9710116] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys.B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I′ theory, Nucl. Phys.B 497 (1997) 155 [hep-th/9609071] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys.B 497 (1997) 56 [hep-th/9702198] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys.B 471 (1996) 195 [hep-th/9603150] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys.B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4-D N = 2 gauge theories: 1., Adv. Theor. Math. Phys.1 (1998) 53 [hep-th/9706110] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys.6 (2019) 052 [arXiv:1812.10451] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S.A. Cherkis, Phases of Five-dimensional Theories, Monopole Walls and Melting Crystals, JHEP06 (2014) 027 [arXiv:1402.7117] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP08 (2015) 097 [arXiv:1505.04439] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams, JHEP05 (2019) 203 [arXiv:1509.03300] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs, JHEP10 (2016) 126 [arXiv:1512.08239] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d SCFT, JHEP01 (2017) 093 [arXiv:1607.07786] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams, JHEP06 (2017) 078 [arXiv:1702.07263] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and Phases of 5D Theories, JHEP09 (2017) 147 [arXiv:1703.02981] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional \( \mathcal{N} \) = 1 SCFT, JHEP06 (2017) 134 [arXiv:1704.00799] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  19. [19]

    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].

  20. [20]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP11 (2017) 041 [arXiv:1707.07181] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    S. Alexandrov, S. Banerjee and P. Longhi, Rigid limit for hypermultiplets and five-dimensional gauge theories, JHEP01 (2018) 156 [arXiv:1710.10665] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d \( \mathcal{N} \) = 1 G2gauge theories, JHEP03 (2018) 125 [arXiv:1801.03916] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  23. [23]

    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP04 (2018) 103 [arXiv:1801.04036] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    B. Assel and A. Sciarappa, Wilson loops in 5d \( \mathcal{N} \) = 1 theories and S-duality, JHEP10 (2018) 082 [arXiv:1806.09636] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  25. [25]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP12 (2018) 016 [arXiv:1806.10569] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, JHEP07 (2019) 178 [arXiv:1809.01650] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, JHEP10 (2019) 282 [arXiv:1811.10616] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat Fibrations, JHEP05 (2019) 187 [arXiv:1811.12400] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs, JHEP05 (2019) 133 [arXiv:1902.04754] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    H. Hayashi, P. Jefferson, H.-C. Kim, K. Ohmori and C. Vafa, SCFTs, Holography and Topological Strings, arXiv:1905.00116 [INSPIRE].

  31. [31]

    F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, 5d Superconformal Field Theories and Graphs, Phys. Lett.B 800 (2020) 135077 [arXiv:1906.11820] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. [32]

    F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part I: Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP11 (2019) 068 [arXiv:1907.05404] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  33. [33]

    F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part II: 5d SCFTs, Gauge Theories and Dualities, JHEP03 (2020) 052 [arXiv:1909.09128] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    L. Bhardwaj, On the classification of 5d SCFTs, arXiv:1909.09635 [INSPIRE].

  35. [35]

    L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi and C. Vafa, Twisted Circle Compactifications of 6d SCFTs, arXiv:1909.11666 [INSPIRE].

  36. [36]

    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP03 (2014) 112 [arXiv:1311.4199] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    G. Zafrir, Duality and enhancement of symmetry in 5d gauge theories, JHEP12 (2014) 116 [arXiv:1408.4040] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP03 (1999) 006 [hep-th/9902179] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed TNas a linear quiver, JHEP02 (2015) 089 [arXiv:1410.6868] [INSPIRE].

    ADS  MATH  Article  MathSciNet  Google Scholar 

  41. [41]

    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett.B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6duals, JHEP07 (2012) 171 [arXiv:1206.3503] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  43. [43]

    A. Passias, A note on supersymmetric AdS6solutions of massive type IIA supergravity, JHEP01 (2013) 113 [arXiv:1209.3267] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6via T Duality, Phys. Rev. Lett.110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5d superconformal indices at large N and holography, JHEP08 (2013) 081 [arXiv:1305.6870] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6solutions of type-II supergravity, JHEP11 (2014) 099 [Erratum ibid.05 (2015) 012] [arXiv:1406.0852] [INSPIRE].

  47. [47]

    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP12 (2015) 163 [arXiv:1507.03860] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    H. Kim, N. Kim and M. Suh, Supersymmetric AdS6Solutions of Type IIB Supergravity, Eur. Phys. J.C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS6× S2in Type IIB supergravity I: Local solutions, JHEP08 (2016) 046 [arXiv:1606.01254] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  50. [50]

    M. Gutperle, A. Trivella and C.F. Uhlemann, Type IIB 7-branes in warped AdS6: partition functions, brane webs and probe limit, JHEP04 (2018) 135 [arXiv:1802.07274] [INSPIRE].

  51. [51]

    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS6/C FT5in Type IIB with stringy operators, JHEP08 (2018) 127 [arXiv:1806.07898] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    M. Fluder, S.M. Hosseini and C.F. Uhlemann, Black hole microstate counting in Type IIB from 5d SCFTs, JHEP05 (2019) 134 [arXiv:1902.05074] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    C.F. Uhlemann, Exact results for 5d SCFTs of long quiver type, JHEP11 (2019) 072 [arXiv:1909.01369] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  54. [54]

    C.-M. Chang, 5d and 6d SCFTs Have No Weak Coupling Limit, JHEP09 (2019) 016 [arXiv:1810.04169] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    K. Hori et al., Mirror symmetry, vol. 1 of Clay mathematics monographs, AMS, Providence, U.S.A. (2003) [http://www.claymath.org/library/monographs/cmim01.pdf ].

  58. [58]

    D. Cox, J. Little and H. Schenck, Toric Varieties, American Mathematical Society (2011) [DOI].

  59. [59]

    X. Wei and R. Ding, Lattice polygons with two interior lattice points, Math. Notes91 (2012) 868.

    MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett.B 357 (1995) 76 [hep-th/9506144] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    S. Ferrara, R.R. Khuri and R. Minasian, M theory on a Calabi-Yau manifold, Phys. Lett.B 375 (1996) 81 [hep-th/9602102] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    M. Aganagic, A Stringy Origin of M2 Brane Chern-Simons Theories, Nucl. Phys.B 835 (2010) 1 [arXiv:0905.3415] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP02 (2010) 036 [arXiv:0911.4127] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  64. [64]

    D.L. Jafferis, Quantum corrections to \( \mathcal{N} \) = 2 Chern-Simons theories with flavor and their AdS4 duals, JHEP08 (2013) 046 [arXiv:0911.4324] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP09 (2011) 005 [arXiv:1105.2299] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  66. [66]

    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].

  67. [67]

    A. Sen, A Note on enhanced gauge symmetries in M and string theory, JHEP09 (1997) 001 [hep-th/9707123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].

  70. [70]

    E. Witten, The “Parity” Anomaly On An Unorientable Manifold, Phys. Rev.B 94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    L. Álvarez-Gaumé and P.H. Ginsparg, The Structure of Gauge and Gravitational Anomalies, Annals Phys.161 (1985) 423 [Erratum ibid.171 (1986) 233] [INSPIRE].

  72. [72]

    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d \( \mathcal{N} \) = 2 theories, JHEP11 (2018) 004 [arXiv:1807.02328] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  74. [74]

    C. Closset and H. Kim, Three-dimensional \( \mathcal{N} \) = 2 supersymmetric gauge theories and partition functions on Seifert manifolds: A review, Int. J. Mod. Phys.A 34 (2019) 1930011 [arXiv:1908.08875] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP05 (2016) 031 [arXiv:1512.02225] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  76. [76]

    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP07 (2018) 061 [arXiv:1712.06604] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    S. Cabrera, A. Hanany and F. Yagi, Tropical Geometry and Five Dimensional Higgs Branches at Infinite Coupling, JHEP01 (2019) 068 [arXiv:1810.01379] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  78. [78]

    E. Cremmer, Supergravities in 5 Dimensions, LPTENS-80-17 (1980) [INSPIRE].

  79. [79]

    S. Ferrara and M. Porrati, AdS5superalgebras with brane charges, Phys. Lett.B 458 (1999) 43 [hep-th/9903241] [INSPIRE].

    ADS  MATH  Article  MathSciNet  Google Scholar 

  80. [80]

    A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev.D 29 (1984) 2366 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  81. [81]

    A.N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett.52 (1984) 18 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  82. [82]

    A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett.51 (1983) 2077 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. [83]

    L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and Odd Dimensions, Annals Phys.163 (1985) 288 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. [84]

    F. Bonetti, T.W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five dimensions, JHEP07 (2013) 043 [arXiv:1302.2918] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  85. [85]

    R. Hartshorne, Algebraic Geometry, Springer New York (1977) [DOI].

  86. [86]

    P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, Inc. (1994) [DOI].

  87. [87]

    C. Closset, Toric geometry and local Calabi-Yau varieties: An Introduction to toric geometry (for physicists), arXiv:0901.3695 [INSPIRE].

  88. [88]

    S. Ishii, Introduction to Singularities, Springer Japan (2014) [DOI].

  89. [89]

    D.A. Cox, Recent developments in toric geometry, alg-geom/9606016.

  90. [90]

    A. Hatcher, Algebraic Topology, Cambridge University Press (2002).

  91. [91]

    J. Hofscheier, Introduction to toric geometry with a view towards lattice polytopes, World Scientific, pp. 1–37 (2019) [DOI].

  92. [92]

    W. Fulton, Introduction to Toric Varieties. (AM-131), Princeton University Press (1993) [DOI].

  93. [93]

    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys.2 (1998) 91 [hep-th/9711013] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  94. [94]

    V. Bouchard, Lectures on complex geometry, Calabi-Yau manifolds and toric geometry, hep-th/0702063 [INSPIRE].

  95. [95]

    C. Closset and S. Cremonesi, Toric Fano varieties and Chern-Simons quivers, JHEP05 (2012) 060 [arXiv:1201.2431] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  96. [96]

    C. Closset, Seiberg duality for Chern-Simons quivers and D-brane mutations, JHEP03 (2012) 056 [arXiv:1201.2432] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  97. [97]

    R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, U.S.A. (1983).

  98. [98]

    F. Chung, Spectral Graph Theory, American Mathematical Society (1996) [DOI].

  99. [99]

    B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-Verlag New York, 1 ed. (1998).

  100. [100]

    F. Harary and B. Manvel, On the number of cycles in a graph, Matematický časopis21 (1971) 55 [http://eudml.org/doc/29956].

  101. [101]

    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Complete prepotential for 5d \( \mathcal{N} \)= 1 superconformal field theories, JHEP02 (2020) 074 [arXiv:1912.10301] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vivek Saxena.

Additional information

ArXiv ePrint: 1911.09574

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saxena, V. Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study. J. High Energ. Phys. 2020, 198 (2020). https://doi.org/10.1007/JHEP04(2020)198

Download citation

Keywords

  • Conformal Field Theory
  • Field Theories in Higher Dimensions
  • M-Theory
  • Supersymmetric Gauge Theory