Eigenvalue spectrum and scaling dimension of lattice \( \mathcal{N} \) = 4 supersymmetric Yang-Mills

Abstract

We investigate the lattice regularization of \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory, by stochastically computing the eigenvalue mode number of the fermion operator. This provides important insight into the non-perturbative renormalization group flow of the lattice theory, through the definition of a scale-dependent effective mass anomalous dimension. While this anomalous dimension is expected to vanish in the conformal continuum theory, the finite lattice volume and lattice spacing generically lead to non-zero values, which we use to study the approach to the continuum limit. Our numerical results, comparing multiple lattice volumes, ’t Hooft couplings, and numbers of colors, confirm convergence towards the expected continuum result, while quantifying the increasing significance of lattice artifacts at larger couplings.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  3. [3]

    H. Osborn, Topological Charges for N = 4 Supersymmetric Gauge Theories and Monopoles of Spin 1, Phys. Lett. B 83 (1979) 321 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015) [INSPIRE].

  5. [5]

    S. Catterall, D. B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    G. Bergner and S. Catterall, Supersymmetry on the lattice, Int. J. Mod. Phys. A 31 (2016) 1643005 [arXiv:1603.04478] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    D. Schaich, Progress and prospects of lattice supersymmetry, PoS LATTICE2018 (2019) 005 [arXiv:1810.09282] [INSPIRE].

  8. [8]

    S. Catterall, J. Giedt and A. Joseph, Twisted supersymmetries in lattice \( \mathcal{N} \) = 4 super Yang-Mills theory, JHEP 10 (2013) 166 [arXiv:1306.3891] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    S. Catterall and J. Giedt, Real space renormalization group for twisted lattice \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 11 (2014) 050 [arXiv:1408.7067] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, Perturbative renormalization of lattice N = 4 super Yang-Mills theory, JHEP 04 (2011) 074 [arXiv:1102.1725] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    S. Catterall and D. Schaich, Lifting flat directions in lattice supersymmetry, JHEP 07 (2015) 057 [arXiv:1505.03135] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    D. J. Weir, S. Catterall and D. Mehta, Eigenvalue spectrum of lattice \( \mathcal{N} \) = 4 super Yang-Mills, PoS LATTICE2013 (2014) 093 [arXiv:1311.3676] [INSPIRE].

  13. [13]

    F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP 01 (2004) 015 [hep-lat/0311021] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    F. Sugino, SuperYang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP 03 (2004) 067 [hep-lat/0401017] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Catterall, A Geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP 11 (2004) 006 [hep-lat/0410052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    A. G. Cohen, D. B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A Target theory with four supercharges, JHEP 08 (2003) 024 [hep-lat/0302017] [INSPIRE].

  17. [17]

    A. G. Cohen, D. B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP 12 (2003) 031 [hep-lat/0307012] [INSPIRE].

  18. [18]

    D. B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP 09 (2005) 042 [hep-lat/0503039] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089 [hep-th/0603046] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    S. Catterall, From Twisted Supersymmetry to Orbifold Lattices, JHEP 01 (2008) 048 [arXiv:0712.2532] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    P. H. Damgaard and S. Matsuura, Geometry of Orbifolded Supersymmetric Lattice Gauge Theories, Phys. Lett. B 661 (2008) 52 [arXiv:0801.2936] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    M. Hanada and I. Kanamori, Absence of sign problem in two-dimensional N = (2, 2) super Yang-Mills on lattice, JHEP 01 (2011) 058 [arXiv:1010.2948] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    S. Catterall, P. H. Damgaard, T. Degrand, R. Galvez and D. Mehta, Phase Structure of Lattice N = 4 Super Yang-Mills, JHEP 11 (2012) 072 [arXiv:1209.5285] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    S. Catterall, D. Schaich, P. H. Damgaard, T. DeGrand and J. Giedt, N = 4 Supersymmetry on a Space-Time Lattice, Phys. Rev. D 90 (2014) 065013 [arXiv:1405.0644] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    D. Schaich and T. DeGrand, Parallel software for lattice N = 4 supersymmetric Yang-Mills theory, Comput. Phys. Commun. 190 (2015) 200 [arXiv:1410.6971] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Catterall, J. Giedt and G. C. Toga, Lattice \( \mathcal{N} \) = 4 super Yang-Mills at strong coupling, JHEP 12 (2020) 140 [arXiv:2009.07334] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    M. A. Clark and A. D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].

  28. [28]

    A. Patella, A precise determination of the psibar-psi anomalous dimension in conformal gauge theories, Phys. Rev. D 86 (2012) 025006 [arXiv:1204.4432] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Scale-dependent mass anomalous dimension from Dirac eigenmodes, JHEP 07 (2013) 061 [arXiv:1301.1355] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Determining the mass anomalous dimension through the eigenmodes of Dirac operator, PoS LATTICE2013 (2014) 088 [arXiv:1311.1287] [INSPIRE].

  31. [31]

    Z. Fodor, K. Holland, J. Kuti, D. Nógrádi and C. H. Wong, The chiral condensate from the Dirac spectrum in BSM gauge theories, PoS LATTICE2013 (2014) 089 [arXiv:1402.6029] [INSPIRE].

  32. [32]

    L. Giusti, C. Hölbling, M. Lüscher and H. Wittig, Numerical techniques for lattice QCD in the E-regime, Comput. Phys. Commun. 153 (2003) 31 [hep-lat/0212012] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C. H. Wong, New approach to the Dirac spectral density in lattice gauge theory applications, PoS LATTICE2015 (2016) 310 [arXiv:1605.08091] [INSPIRE].

  34. [34]

    G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, Spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavors, Phys. Rev. D 96 (2017) 034504 [arXiv:1610.01576] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A. Stathopoulos and J. R. McCombs, PRIMME: preconditioned iterative multimethod eigensolver-methods and software description, ACM Trans. Math. Softw. 37 (2010) 21.

    Article  Google Scholar 

  36. [36]

    D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georg Bergner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.06775

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergner, G., Schaich, D. Eigenvalue spectrum and scaling dimension of lattice \( \mathcal{N} \) = 4 supersymmetric Yang-Mills. J. High Energ. Phys. 2021, 260 (2021). https://doi.org/10.1007/JHEP04(2021)260

Download citation

Keywords

  • Lattice Quantum Field Theory
  • Supersymmetric Gauge Theory
  • Extended Supersymmetry
  • Lattice QCD