Skip to main content

The integrability of Virasoro charges for axisymmetric Killing horizons

A preprint version of the article is available at arXiv.

Abstract

Through the analysis of null symplectic structure, we derive the condition for integrable Virasoro generators on the covariant phase space of axisymmetric Killing horizons. A weak boundary condition selects a special relationship between the two temperatures for the putative CFT. When the integrability is satisfied for both future and past horizons, the two central charges are equal. At the end we discuss the physical implications.

References

  1. [1]

    S. Carlip, The Statistical mechanics of the (2 + 1)-dimensional black hole, Phys. Rev. D 51 (1995) 632 [gr-qc/9409052] [INSPIRE].

  2. [2]

    A. P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    C. Teitelboim, Statistical thermodynamics of a black hole in terms of surface fields, Phys. Rev. D 53 (1996) 2870 [hep-th/9510180] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  4. [4]

    L. Donnay, G. Giribet, H. A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].

    Article  Google Scholar 

  5. [5]

    S. W. Hawking, M. J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    Article  Google Scholar 

  6. [6]

    S. W. Hawking, M. J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    A. J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    G. Compère and A. Fiorucci, Advanced Lectures on General Relativity, arXiv:1801.07064 [INSPIRE].

  11. [11]

    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. [12]

    L. Donnay, G. Giribet, H. A. González and M. Pino, Extended Symmetries at the Black Hole Horizon, JHEP 09 (2016) 100 [arXiv:1607.05703] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    J. L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D Flat Cosmological Horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].

    Article  Google Scholar 

  15. [15]

    S. Detournay, T. Hartman and D. M. Hofman, Warped Conformal Field Theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].

    Article  Google Scholar 

  16. [16]

    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    S. Carlip, Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon, Phys. Rev. Lett. 120 (2018) 101301 [arXiv:1702.04439] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  20. [20]

    S. Carlip, Near-horizon Bondi-Metzner-Sachs symmetry, dimensional reduction, and black hole entropy, Phys. Rev. D 101 (2020) 046002 [arXiv:1910.01762] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  21. [21]

    J. M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    S. Haco, S. W. Hawking, M. J. Perry and A. Strominger, Black Hole Entropy and Soft Hair, JHEP 12 (2018) 098 [arXiv:1810.01847] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    A. Aggarwal, A. Castro and S. Detournay, Warped Symmetries of the Kerr Black Hole, JHEP 01 (2020) 016 [arXiv:1909.03137] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    S. Haco, M. J. Perry and A. Strominger, Kerr-Newman Black Hole Entropy and Soft Hair, arXiv:1902.02247 [INSPIRE].

  25. [25]

    L.-Q. Chen, W. Z. Chua, S. Liu, A. J. Speranza and B. d. S. L. Torres, Virasoro hair and entropy for axisymmetric Killing horizons, Phys. Rev. Lett. 125 (2020) 241302 [arXiv:2006.02430] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  26. [26]

    A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. [27]

    A. Castro, J. M. Lapan, A. Maloney and M. J. Rodriguez, Black Hole Monodromy and Conformal Field Theory, Phys. Rev. D 88 (2013) 044003 [arXiv:1303.0759] [INSPIRE].

    Article  Google Scholar 

  28. [28]

    A. Castro, J. M. Lapan, A. Maloney and M. J. Rodriguez, Black Hole Scattering from Monodromy, Class. Quant. Grav. 30 (2013) 165005 [arXiv:1304.3781] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    R. M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

  30. [30]

    M. Perry and M. J. Rodriguez, Central Charges for AdS Black Holes, arXiv:2007.03709 [INSPIRE].

  31. [31]

    V. Chandrasekaran and A. J. Speranza, Anomalies in gravitational charge algebras of null boundaries and black hole entropy, JHEP 01 (2021) 137 [arXiv:2009.10739] [INSPIRE].

    MATH  Article  Google Scholar 

  32. [32]

    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  34. [34]

    V. Iyer and R. M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. [35]

    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    D. Harlow and J.-Q. Wu, Covariant phase space with boundaries, JHEP 10 (2020) 146 [arXiv:1906.08616] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    R. Ruzziconi, Asymptotic Symmetries in the Gauge Fixing Approach and the BMS Group, PoS(Modave2019)003 [arXiv:1910.08367] [INSPIRE].

  38. [38]

    K. Shi, X. Wang, Y. Xiu and H. Zhang, Covariant phase space with null boundaries, arXiv:2008.10551 [INSPIRE].

  39. [39]

    T. Jacobson, G. Kang and R. C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  40. [40]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11 (2020) 026 [arXiv:2006.12527] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP 11 (2018) 200 [Erratum ibid. 04 (2020) 172] [arXiv:1810.00377] [INSPIRE].

  42. [42]

    G. Compère, A. Fiorucci and R. Ruzziconi, The Λ-BMS4 charge algebra, JHEP 10 (2020) 205 [arXiv:2004.10769] [INSPIRE].

    MATH  Article  Google Scholar 

  43. [43]

    A. Fiorucci and R. Ruzziconi, Charge Algebra in Al(A)dSn Spacetimes, arXiv:2011.02002 [INSPIRE].

  44. [44]

    A. Ashtekar and M. Streubel, Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585.

    MathSciNet  Article  Google Scholar 

  45. [45]

    F. Hopfmüller and L. Freidel, Gravity Degrees of Freedom on a Null Surface, Phys. Rev. D 95 (2017) 104006 [arXiv:1611.03096] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  46. [46]

    K. Parattu, S. Chakraborty, B. R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    L. Lehner, R. C. Myers, E. Poisson and R. D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  48. [48]

    F. Hopfmüller and L. Freidel, Null Conservation Laws for Gravity, Phys. Rev. D 97 (2018) 124029 [arXiv:1802.06135] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  49. [49]

    V. Chandrasekaran, É. É. Flanagan and K. Prabhu, Symmetries and charges of general relativity at null boundaries, JHEP 11 (2018) 125 [arXiv:1807.11499] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  51. [51]

    E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge U.K. (2009) [INSPIRE].

    MATH  Google Scholar 

  52. [52]

    V. P. Frolov and K. S. Thorne, Renormalized Stress-Energy Tensor Near the Horizon of a Slowly Evolving, Rotating Black Hole, Phys. Rev. D 39 (1989) 2125 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  53. [53]

    G. Compère, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 20 (2017) 1 [arXiv:1203.3561] [INSPIRE].

    MATH  Article  Google Scholar 

  54. [54]

    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  55. [55]

    S. Carlip, What we don’t know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998) 3609 [hep-th/9806026] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    L. Q. Chen, W. Z. Chua and B. d. S. L. Torres, Hidden symmetry and Virasoro hair of the near-horizon spacetime, to appear.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin-Qing Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.11273

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, LQ. The integrability of Virasoro charges for axisymmetric Killing horizons. J. High Energ. Phys. 2021, 11 (2021). https://doi.org/10.1007/JHEP04(2021)011

Download citation

Keywords

  • Black Holes
  • Conformal and W Symmetry
  • Space-Time Symmetries