Correlation functions in \( \mathcal{N} \) = 2 Supersymmetric vector matter Chern-Simons theory

Abstract

Correlation functions of the higher-spin current operators in large N Chern-Simons theories are important to understand approximate higher-spin symmetries in these theories. Moreover, they also provide stronger checks for conjectured dualities in these theories. In this paper, we compute the two, three and four-point functions of the operators in the spin zero multiplet of \( \mathcal{N} \) = 2 Supersymmetric vector matter Chern-Simons theory at large N to all orders of ’t Hooft coupling. While the two- and three-point functions are computed by solving the Schwinger-Dyson equation, this method becomes intractable for the computation of the four-point functions. Thereby, we use bootstrap method to evaluate four-point function of scalar operator \( {J}_0^f=\overline{\psi}\psi \) and \( {J}_0^b=\overline{\phi}\phi . \) Interestingly, because \( \left\langle {J}_0^f{J}_0^f{J}_0^b\right\rangle \) is a contact term, the four point function of \( {J}_0^f \) operator resembles the corresponding correlation function in the free theory, up to overall coupling constant dependent factors and up to some ‘bulk AdS’ contact terms. On the other hand the \( {J}_0^b \) four-point function receives an additional contribution compared to the free theory expression due to the \( {J}_0^f \) exchange. We find that the double discontinuity of this single trace operator \( {J}_0^f \) vanishes and hence it only contributes to AdS-contact term.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

  2. [2]

    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  3. [3]

    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

  4. [4]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav.30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

  5. [5]

    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

  6. [6]

    S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov, On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models, JHEP01 (2017) 058 [arXiv:1610.08472] [INSPIRE].

  7. [7]

    E. Skvortsov, Light-Front Bootstrap for Chern-Simons Matter Theories, JHEP06 (2019) 058 [arXiv:1811.12333] [INSPIRE].

  8. [8]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett.B 243 (1990) 378 [INSPIRE].

  9. [9]

    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].

  10. [10]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

  11. [11]

    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys.B 644 (2002) 303 [Erratum ibid.B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  12. [12]

    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

  13. [13]

    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

  14. [14]

    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large N Chern-Simons-Matter Theories, JHEP03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

  15. [15]

    S. Yokoyama, Chern-Simons-Fermion Vector Model with Chemical Potential, JHEP01 (2013) 052 [arXiv:1210.4109] [INSPIRE].

  16. [16]

    S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons Theories with Vector Matter, JHEP10 (2012) 194 [arXiv:1207.4750] [INSPIRE].

  17. [17]

    S. Yokoyama, A Note on Large N Thermal Free Energy in Supersymmetric Chern-Simons Vector Models, JHEP01 (2014) 148 [arXiv:1310.0902] [INSPIRE].

  18. [18]

    T. Takimi, Duality and higher temperature phases of large N Chern-Simons matter theories on S2× S1 , JHEP07 (2013) 177 [arXiv:1304.3725] [INSPIRE].

  19. [19]

    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama, Phases of large N vector Chern-Simons theories on S2× S1 , JHEP09 (2013) 009 [arXiv:1301.6169] [INSPIRE].

  20. [20]

    S. Minwalla and S. Yokoyama, Chern Simons Bosonization along RG Flows, JHEP02 (2016) 103 [arXiv:1507.04546] [INSPIRE].

  21. [21]

    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP11 (2015) 013 [arXiv:1507.04378] [INSPIRE].

  22. [22]

    S. Choudhury et al., Bose-Fermi Chern-Simons Dualities in the Higgsed Phase, JHEP11 (2018) 177 [arXiv:1804.08635] [INSPIRE].

  23. [23]

    A. Dey, I. Halder, S. Jain, L. Janagal, S. Minwalla and N. Prabhakar, Duality and an exact Landau-Ginzburg potential for quasi-bosonic Chern-Simons-Matter theories, JHEP11 (2018) 020 [arXiv:1808.04415] [INSPIRE].

  24. [24]

    A. Dey, I. Halder, S. Jain, S. Minwalla and N. Prabhakar, The large N phase diagram of \( \mathcal{N} \) = 2SU(N ) Chern-Simons theory with one fundamental chiral multiplet, JHEP11 (2019) 113 [arXiv:1904.07286] [INSPIRE].

  25. [25]

    Y. Dandekar, M. Mandlik and S. Minwalla, Poles in the S-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics, JHEP04 (2015) 102 [arXiv:1407.1322] [INSPIRE].

  26. [26]

    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP04 (2015) 129 [arXiv:1404.6373] [INSPIRE].

  27. [27]

    K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh and S. Yokoyama, Unitarity, crossing symmetry and duality in the scattering of \( \mathcal{N} \) = 1 SUSY matter Chern-Simons theories, JHEP10 (2015) 176 [arXiv:1505.06571] [INSPIRE].

  28. [28]

    S. Yokoyama, Scattering Amplitude and Bosonization Duality in General Chern-Simons Vector Models, JHEP09 (2016) 105 [arXiv:1604.01897] [INSPIRE].

  29. [29]

    K. Inbasekar, S. Jain, P. Nayak and V. Umesh, All tree level scattering amplitudes in Chern-Simons theories with fundamental matter, Phys. Rev. Lett.121 (2018) 161601 [arXiv:1710.04227] [INSPIRE].

  30. [30]

    K. Inbasekar et al., Dual superconformal symmetry of \( \mathcal{N} \) = 2 Chern-Simons theory with fundamental matter at large N , JHEP06 (2019) 016 [arXiv:1711.02672] [INSPIRE].

  31. [31]

    G. Gur-Ari and R. Yacoby, Correlators of Large N Fermionic Chern-Simons Vector Models, JHEP02 (2013) 150 [arXiv:1211.1866] [INSPIRE].

  32. [32]

    M. Geracie, M. Goykhman and D.T. Son, Dense Chern-Simons Matter with Fermions at Large N , JHEP04 (2016) 103 [arXiv:1511.04772] [INSPIRE].

  33. [33]

    G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-Matter Theories, JHEP07 (2016) 090 [arXiv:1605.01122] [INSPIRE].

  34. [34]

    S. Giombi, V. Kirilin and E. Skvortsov, Notes on Spinning Operators in Fermionic CFT, JHEP05 (2017) 041 [arXiv:1701.06997] [INSPIRE].

  35. [35]

    R. Yacoby, Scalar Correlators in Bosonic Chern-Simons Vector Models, arXiv:1805.11627 [INSPIRE].

  36. [36]

    S. Jain, V. Malvimat, A. Mehta, S. Prakash and N. Sudhir, The Anomalous Dimension of the Scalar Primary in Chern Simons Vector Models, arXiv:1906.06342 [INSPIRE].

  37. [37]

    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP10 (2011) 075 [arXiv:1108.5373] [INSPIRE].

  38. [38]

    J. Park and K.-J. Park, Seiberg-like Dualities for 3d N = 2 Theories with SU(N) gauge group, JHEP10 (2013) 198 [arXiv:1305.6280] [INSPIRE].

  39. [39]

    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

  40. [40]

    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys.B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

  41. [41]

    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP11 (2013) 037 [arXiv:1305.7235] [INSPIRE].

  42. [42]

    O. Aharony, S. Jain and S. Minwalla, Flows, Fixed Points and Duality in Chern-Simons-matter theories, JHEP12 (2018) 058 [arXiv:1808.03317] [INSPIRE].

  43. [43]

    D. Radičević, Disorder Operators in Chern-Simons-Fermion Theories, JHEP03 (2016) 131 [arXiv:1511.01902] [INSPIRE].

  44. [44]

    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE].

  45. [45]

    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

  46. [46]

    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].

  47. [47]

    P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP09 (2016) 095 [arXiv:1607.07457] [INSPIRE].

  48. [48]

    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD3And Dualities, SciPost Phys.5 (2018) 007 [arXiv:1710.03258] [INSPIRE].

  49. [49]

    C. Córdova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys.4 (2018) 021 [arXiv:1711.10008] [INSPIRE].

  50. [50]

    C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies and Dualities in (2+1)d, SciPost Phys.5 (2018) 006 [arXiv:1712.08639] [INSPIRE].

  51. [51]

    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2+1) –dimensional Majorana fermions, Phys. Rev.B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].

  52. [52]

    C. Córdova, P.-S. Hsin and K. Ohmori, Exceptional Chern-Simons-Matter Dualities, SciPost Phys.7 (2019) 056 [arXiv:1812.11705] [INSPIRE].

  53. [53]

    I. Halder and S. Minwalla, Matter Chern Simons Theories in a Background Magnetic Field, JHEP11 (2019) 089 [arXiv:1904.07885] [INSPIRE].

  54. [54]

    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

  55. [55]

    G.J. Turiaci and A. Zhiboedov, Veneziano Amplitude of Vasiliev Theory, JHEP10 (2018) 034 [arXiv:1802.04390] [INSPIRE].

  56. [56]

    O. Aharony, L.F. Alday, A. Bissi and R. Yacoby, The Analytic Bootstrap for Large N Chern-Simons Vector Models, JHEP08 (2018) 166 [arXiv:1805.04377] [INSPIRE].

  57. [57]

    Z. Li, Bootstrapping Veneziano Amplitude of Vasiliev Theory and 3D Bosonization, arXiv:1906.05834 [INSPIRE].

  58. [58]

    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

  59. [59]

    O. Aharony and A. Sharon, Large N renormalization group flows in 3d \( \mathcal{N} \)= 1 Chern-Simons-Matter theories, JHEP07 (2019) 160 [arXiv:1905.07146] [INSPIRE].

  60. [60]

    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys.129 (1990) 393 [INSPIRE].

  61. [61]

    A.A. Nizami, T. Sharma and V. Umesh, Superspace formulation and correlation functions of 3d superconformal field theories, JHEP07 (2014) 022 [arXiv:1308.4778] [INSPIRE].

  62. [62]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

  63. [63]

    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

  64. [64]

    S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP07 (2013) 105 [arXiv:1104.4317] [INSPIRE].

  65. [65]

    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

  66. [66]

    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

  67. [67]

    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pranjal Nayak.

Additional information

ArXiv ePrint: 1907.11722

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Inbasekar, K., Jain, S., Malvimat, V. et al. Correlation functions in \( \mathcal{N} \) = 2 Supersymmetric vector matter Chern-Simons theory. J. High Energ. Phys. 2020, 207 (2020). https://doi.org/10.1007/JHEP04(2020)207

Download citation

Keywords

  • 1/N Expansion
  • Chern-Simons Theories
  • Higher Spin Symmetry
  • Field Theories in Lower Dimensions