Constructing d-log integrands and computing master integrals for three-loop four-particle scattering


We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimensional regulator up to 8th power, with coefficients expressed in terms of harmonic polylogarithms. As a basis of master integrals we choose integrals with integrands that only have logarithmic poles — called dlog forms. This choice greatly facilitates the subsequent computation via the method of differential equations. We detail how this basis is obtained via an improved algorithm originally developed by one of the authors. We provide a public implementation of this algorithm. We explain how the algorithm is naturally applied in the context of unitarity. In addition, we classify our dlog forms according to their soft and collinear properties.

A preprint version of the article is available at ArXiv.


  1. [1]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

  2. [2]

    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977) 831.

  3. [3]

    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.B 595 (2004) 521 [Erratum ibid.B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

  4. [4]

    J.M. Henn and B. Mistlberger, Four-gluon scattering at three loops, infrared structure and the Regge limit, Phys. Rev. Lett.117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].

  5. [5]

    S. Abreu et al., The two-loop five-point amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Phys. Rev. Lett.122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

  6. [6]

    S. Caron-Huot et al., Six-gluon amplitudes in planar \( \mathcal{N} \) = 4 Super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].

  7. [7]

    S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett.123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

  8. [8]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

  9. [9]

    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP03 (2012) 101 [arXiv:1112.4524] [INSPIRE].

  10. [10]

    J. Drummond et al., Leading singularities and off-shell conformal integrals, JHEP08 (2013) 133 [arXiv:1303.6909] [INSPIRE].

  11. [11]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett.113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].

  12. [12]

    Z. Bern et al., Logarithmic Singularities and Maximally Supersymmetric Amplitudes, JHEP06 (2015) 202 [arXiv:1412.8584] [INSPIRE].

  13. [13]

    P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis, Johannes-Gutenberg-Universit¨at Mainz, Mainz, Germany (2016).

  14. [14]

    K.J. Larsen and R. Rietkerk, MultivariateResidues — A Mathematica package for computing multivariate residues, PoS(RADCOR2017)021 [arXiv:1712.07050] [INSPIRE].

  15. [15]

    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE].

  16. [16]

    A.V. Kotikov, Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett.B 259 (1991) 314 [INSPIRE].

  17. [17]

    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett.B 267 (1991) 123 [Erratum ibid.B 295 (1992) 409] [INSPIRE].

  18. [18]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

  19. [19]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  20. [20]

    O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun.219 (2017) 329 [arXiv:1701.04269] [INSPIRE].

  21. [21]

    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP04 (2015) 108 [arXiv:1411.0911] [INSPIRE].

  22. [22]

    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP04 (2017) 006 [arXiv:1611.01087] [INSPIRE].

  23. [23]

    M. Prausa, epsilon: a tool to find a canonical basis of master integrals, Comput. Phys. Commun.219 (2017) 361 [arXiv:1701.00725] [INSPIRE].

  24. [24]

    C. Dlapa, J. Henn and K. Yan, Deriving canonical differential equations for Feynman integrals from a single uniform weight integral, arXiv:2002.02340 [INSPIRE].

  25. [25]

    M. H¨oschele, J. Hoff and T. Ueda, Adequate bases of phase space master integrals for gg → h at NNLO and beyond, JHEP09 (2014) 116 [arXiv:1407.4049] [INSPIRE].

  26. [26]

    D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev.D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

  27. [27]

    S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop amplitudes, JHEP08 (2012) 065 [arXiv:1207.2976] [INSPIRE].

  28. [28]

    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

  29. [29]

    H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev.D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

  30. [30]

    J.L. Bourjaily and J. Trnka, Local integrand representations of all two-loop amplitudes in planar SYM, JHEP08 (2015) 119 [arXiv:1505.05886] [INSPIRE].

  31. [31]

    J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive unitarity, JHEP06 (2017) 059 [arXiv:1704.05460] [INSPIRE].

  32. [32]

    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP05 (2011) 105 [arXiv:1008.2965] [INSPIRE].

  33. [33]

    J.L. Bourjaily et al., The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP03 (2012) 032 [arXiv:1112.6432] [INSPIRE].

  34. [34]

    J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp anomalous dimension, Phys. Rev. Lett.122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

  35. [35]

    A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP02 (2015) 120 [arXiv:1411.7392] [INSPIRE].

  36. [36]

    A. von Manteuffel, E. Panzer and R.M. Schabinger, On the computation of form factors in massless QCD with finite master integrals, Phys. Rev.D 93 (2016) 125014 [arXiv:1510.06758] [INSPIRE].

  37. [37]

    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell planar triple box, Phys. Lett.B 567 (2003) 193 [hep-ph/0305142] [INSPIRE].

  38. [38]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP07 (2013) 128 [arXiv:1306.2799] [INSPIRE].

  39. [39]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

  40. [40]

    D. Chicherin et al., All master integrals for three-jet production at next-to-next-to-leading order, Phys. Rev. Lett.123 (2019) 041603 [arXiv:1812.11160] [INSPIRE].

  41. [41]

    E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt University, Berling, Germany (2015), arXiv:1506.07243 [INSPIRE].

  42. [42]

    D.J. Broadhurst, Summation of an infinite series of ladder diagrams, Phys. Lett.B 307 (1993) 132 [INSPIRE].

  43. [43]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

  44. [44]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

  45. [45]

    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].

  46. [46]

    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett.B 100 (1981) 65.

  47. [47]

    K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

  48. [48]

    J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to N = 4 super-Yang-Mills, J. Phys.A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].

  49. [49]

    J.M. Henn, G.P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and QCD, JHEP04 (2020) 018 [arXiv:1911.10174] [INSPIRE].

  50. [50]

    M. Besier, P. Wasser and S. Weinzierl, RationalizeRoots: software package for the rationalization of square roots, arXiv:1910.13251 [INSPIRE].

  51. [51]

    E. Herrmann and J. Parra-Martinez, Logarithmic forms and differential equations for Feynman integrals, JHEP02 (2020) 099 [arXiv:1909.04777] [INSPIRE].

  52. [52]

    D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry,

  53. [53]

    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP06 (2014) 114 [arXiv:1404.2922] [INSPIRE].

  54. [54]

    D. Chicherin et al., Analytic result for the nonplanar hexa-box integrals, JHEP03 (2019) 042 [arXiv:1809.06240] [INSPIRE].

  55. [55]

    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

  56. [56]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  57. [57]

    T. Ahmed, J. Henn and B. Mistlberger, Four-particle scattering amplitudes in QCD at NNLO to higher orders in the dimensional regulator, JHEP12 (2019) 177 [arXiv:1910.06684] [INSPIRE].

  58. [58]

    J.M. Henn and B. Mistlberger, Four-graviton scattering to three loops in \( \mathcal{N} \) = 8 supergravity, JHEP05 (2019) 023 [arXiv:1902.07221] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Bernhard Mistlberger.

Additional information

ArXiv ePrint: 2002.09492

Electronic supplementary material


(TAR 1278 kb)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henn, J., Mistlberger, B., Smirnov, V.A. et al. Constructing d-log integrands and computing master integrals for three-loop four-particle scattering. J. High Energ. Phys. 2020, 167 (2020).

Download citation


  • NLO Computations