Transverse collective modes in interacting holographic plasmas

Abstract

We study in detail the transverse collective modes of simple holographic models in presence of electromagnetic Coulomb interactions. We render the Maxwell gauge field dynamical via mixed boundary conditions, corresponding to a double trace deformation in the boundary field theory. We consider three different situations: (i) a holographic plasma with conserved momentum, (ii) a holographic (dirty) plasma with finite momentum relaxation and (iii) a holographic viscoelastic plasma with propagating transverse phonons. We observe two interesting new features induced by the Coulomb interactions: a mode repulsion between the shear mode and the photon mode at finite momentum relaxation, and a propagation-to-diffusion crossover of the transverse collective modes induced by the finite electromagnetic interactions. Finally, at large charge density, our results are in agreement with the transverse collective mode spectrum of a charged Fermi liquid for strong interaction between quasi-particles, but with an important difference: the gapped photon mode is damped even at zero momentum. This property, usually referred to as anomalous attenuation, is produced by the interaction with a quantum critical continuum of states and might be experimentally observable in strongly correlated materials close to quantum criticality, e.g. in strange metals.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Nozieres and D. Pines, Theory of quantum liquids, Advanced Books Classics, Avalon Publishing, U.S.A. (1999).

  2. [2]

    D. Pines and D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions, Phys. Rev.85 (1952) 338 [INSPIRE].

  3. [3]

    S.A. Maier, Plasmonics: fundamentals and applications, Springer, New York, NY, U.S.A. (2007).

  4. [4]

    J. Jackson, Classical electrodynamics, Wiley, U.S.A. (1975).

  5. [5]

    M. Mitrano et al., Anomalous density fluctuations in a strange metal, Proc. Nat. Acad. Sci.115 (2018) 5392.

    ADS  Article  Google Scholar 

  6. [6]

    A.A. Husain et al., Crossover of charge fluctuations across the strange metal phase diagram, Phys. Rev.X 9 (2019) 041062.

    Article  Google Scholar 

  7. [7]

    U. Gran, M. Tornsö and T. Zingg, Holographic plasmons, JHEP11 (2018) 176 [arXiv:1712.05672] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    U. Gran, M. Tornsö and T. Zingg, Plasmons in holographic graphene, arXiv:1804.02284 [INSPIRE].

  9. [9]

    U. Gran, M. Tornsö and T. Zingg, Exotic holographic dispersion, JHEP02 (2019) 032 [arXiv:1808.05867] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    U. Gran, M. Tornsö and T. Zingg, Holographic response of electron clouds, JHEP03 (2019) 019 [arXiv:1810.11416] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  11. [11]

    E. Mauri and H.T.C. Stoof, Screening of Coulomb interactions in holography, JHEP04 (2019) 035 [arXiv:1811.11795] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    A. Romero-Bermúdez, A. Krikun, K. Schalm and J. Zaanen, Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev.B 99 (2019) 235149 [arXiv:1812.03968] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. Romero-Bermúdez, Density response of holographic metallic IR fixed points with translational pseudo-spontaneous symmetry breaking, JHEP07 (2019) 153 [arXiv:1904.06237] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    M. Baggioli, U. Gran, A.J. Alba, M. Tornsö and T. Zingg, Holographic plasmon relaxation with and without broken translations, JHEP09 (2019) 013 [arXiv:1905.00804] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    T. Andrade, A. Krikun and A. Romero-Bermúdez, Charge density response and fake plasmons in holographic models with strong translation symmetry breaking, JHEP12 (2019) 159 [arXiv:1909.12242] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    K. Trachenko and V.V. Brazhkin, Collective modes and thermodynamics of the liquid state, Rept. Prog. Phys.79 (2015) 016502 [arXiv:1512.06592].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    C. Yang, M. Dove, V. Brazhkin and K. Trachenko, Emergence and evolution of the k-gap in spectra of liquid and supercritical states, Phys. Rev. Lett.118 (2017) 215502 [arXiv:1706.00836].

    ADS  Article  Google Scholar 

  18. [18]

    M. Baggioli and K. Trachenko, Low frequency propagating shear waves in holographic liquids, JHEP03 (2019) 093 [arXiv:1807.10530] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    M. Baggioli and K. Trachenko, Maxwell interpolation and close similarities between liquids and holographic models, Phys. Rev.D 99 (2019) 106002 [arXiv:1808.05391] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    M. Baggioli, V.V. Brazhkin, K. Trachenko and M. Vasin, Gapped momentum states, arXiv:1904.01419 [INSPIRE].

  21. [21]

    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    J.Y. Khoo and I.S. Villadiego, Shear sound of two-dimensional Fermi liquids, Phys. Rev.B 99 (2019) 075434 [arXiv:1806.04157] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    S. Conti and G. Vignale, Elasticity of an electron liquid, Phys. Rev.B 60 (1999) 7966 [cond-mat/9811214].

  24. [24]

    J.Y. Khoo, P.-Y. Chang, F. Pientka and I. Sodemann, Quantum paracrystalline shear modes of the electron liquid, arXiv:2001.06496.

  25. [25]

    H. Ohta and S. Hamaguchi, Wave dispersion relations in Yukawa fluids, Phys. Rev. Lett.84 (2000) 6026.

    ADS  Article  Google Scholar 

  26. [26]

    S.A. Khrapak, A.G. Khrapak, N.P. Kryuchkov and S.O. Yurchenko, Onset of transverse (shear) waves in strongly-coupled Yukawa fluids, J. Chem. Phys.150 (2019) 104503.

    ADS  Article  Google Scholar 

  27. [27]

    V. Nosenko, J. Goree and A. Piel, Cutoff wave number for shear waves in a two-dimensional Yukawa system (dusty plasma), Phys. Rev. Lett.97 (2006) 115001.

    ADS  Article  Google Scholar 

  28. [28]

    M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic phonons, Phys. Rev. Lett.120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  32. [32]

    M. Ammon, M. Baggioli, S. Gray and S. Grieninger, Longitudinal sound and diffusion in holographic massive gravity, JHEP10 (2019) 064 [arXiv:1905.09164] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  33. [33]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. [35]

    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    R.E. Arias and I.S. Landea, Hydrodynamic modes of a holographic p-wave superfluid, JHEP11 (2014) 047 [arXiv:1409.6357] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys.4 (2018) 005 [arXiv:1707.08577] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density dependence of transport coefficients from holographic hydrodynamics, Prog. Theor. Phys.120 (2008) 833 [arXiv:0806.4460] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  40. [40]

    K. Trachenko, Quantum dissipation in a scalar field theory with gapped momentum states, Sci. Rep.9 (2019) 6766 [arXiv:1905.07405] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    L. Tonks and I. Langmuir, Oscillations in ionized gases, Phys. Rev.33 (1929) 195.

    ADS  MATH  Article  Google Scholar 

  42. [42]

    K. Huang, Lattice vibrations and optical waves in ionic crystals, Nature167 (1951) 779.

    ADS  Article  Google Scholar 

  43. [43]

    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    T. Andrade, M. Baggioli and O. Pujolàs, Linear viscoelastic dynamics in holography, Phys. Rev.D 100 (2019) 106014 [arXiv:1903.02859] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. [45]

    M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, JHEP09 (2019) 124 [arXiv:1904.05785] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    M. Baggioli and S. Grieninger, Zoology of solid & fluid holography — Goldstone modes and phase relaxation, JHEP10 (2019) 235 [arXiv:1905.09488] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    M. Baggioli, S. Grieninger and H. Soltanpanahi, Nonlinear oscillatory shear tests in viscoelastic holography, Phys. Rev. Lett.124 (2020) 081601 [arXiv:1910.06331] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    M. Baggioli, V.C. Castillo and O. Pujolàs, Scale invariant solids, Phys. Rev.D 101 (2020) 086005 [arXiv:1910.05281] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP07 (2016) 074 [arXiv:1601.03384] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    A.J. Beekman, J. Nissinen, K. Wu and J. Zaanen, Dual gauge field theory of quantum liquid crystals in three dimensions, Phys. Rev.B 96 (2017) 165115 [arXiv:1703.03157] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP04 (2019) 141 [arXiv:1707.04182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    J.M. Martín-García, xAct: efficient tensor computer algebra for the Wolfram language, https://www.xact.es.

  53. [53]

    T. Nutma, xTras: a field-theory inspired xAct package for Mathematica, Comput. Phys. Commun.185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Baggioli.

Additional information

ArXiv ePrint: 1912.07321

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baggioli, M., Gran, U. & Tornsö, M. Transverse collective modes in interacting holographic plasmas. J. High Energ. Phys. 2020, 106 (2020). https://doi.org/10.1007/JHEP04(2020)106

Download citation

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • Gauge-gravity correspondence