Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Instabilities of thin black rings: closing the gap

Abstract

We initiate the study of dynamical instabilities of higher-dimensional black holes using the blackfold approach, focusing on asymptotically flat boosted black strings and singly-spinning black rings in D ≥ 5. We derive novel analytic expressions for the growth rate of the Gregory-Laflamme instability for boosted black strings and its onset for arbitrary boost parameter. In the case of black rings, we study their stability properties in the region of parameter space that has so far remained inaccessible to numerical approaches. In particular, we show that very thin (ultraspinning) black rings exhibit a Gregory-Laflamme instability, giving strong evidence that black rings are unstable in the entire range of parameter space. For very thin rings, we show that the growth rate of the instability increases with increasing non-axisymmetric mode m while for thicker rings, there is competition between the different modes. However, up to second order in the blackfold approximation, we do not observe an elastic instability, in particular for large modes m ≫ 1, where this approximation has higher accuracy. This suggests that the Gregory-Laflamme instability is the dominant instability for very thin black rings. Additionally, we find a long-lived mode that describes a wiggly time-dependent deformation of a black ring. We comment on disagreements between our results and corresponding ones obtained from a large D analysis of black ring instabilities.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

  2. [2]

    O.J.C. Dias et al., Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].

  3. [3]

    O.J.C. Dias et al., An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [INSPIRE].

  4. [4]

    G.S. Hartnett and J.E. Santos, Non-axisymmetric instability of rotating black holes in higher dimensions, Phys. Rev. D 88 (2013) 041505 [arXiv:1306.4318] [INSPIRE].

  5. [5]

    O.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav. 31 (2014) 245011 [arXiv:1402.7047] [INSPIRE].

  6. [6]

    J.E. Santos and B. Way, Neutral black rings in five dimensions are unstable, Phys. Rev. Lett. 114 (2015) 221101 [arXiv:1503.00721] [INSPIRE].

  7. [7]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

  8. [8]

    J.L. Hovdebo and R.C. Myers, Black rings, boosted strings and Gregory-Laflamme, Phys. Rev. D 73 (2006) 084013 [hep-th/0601079] [INSPIRE].

  9. [9]

    M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev. D 81 (2010) 021501 [arXiv:0912.3606] [INSPIRE].

  10. [10]

    M. Shibata and H. Yoshino, Bar-mode instability of rapidly spinning black hole in higher dimensions: numerical simulation in general relativity, Phys. Rev. D 81 (2010) 104035 [arXiv:1004.4970] [INSPIRE].

  11. [11]

    P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End point of the ultraspinning instability and violation of cosmic censorship, Phys. Rev. Lett. 118 (2017) 151103 [arXiv:1702.01755] [INSPIRE].

  12. [12]

    P. Figueras, M. Kunesch and S. Tunyasuvunakool, End point of black ring instabilities and the weak cosmic censorship conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].

  13. [13]

    L. Lehner and F. Pretorius, Black strings, low viscosity fluids and violation of cosmic censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].

  14. [14]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].

  15. [15]

    J. Armas and M. Blau, Blackfolds, plane waves and minimal surfaces, JHEP 07 (2015) 156 [arXiv:1503.08834] [INSPIRE].

  16. [16]

    J. Armas and M. Blau, New geometries for black hole horizons, JHEP 07 (2015) 048 [arXiv:1504.01393] [INSPIRE].

  17. [17]

    J. Armas, Geometries for black hole horizons, in the proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14), July 12–18, Rome, Italy (2015).

  18. [18]

    J. Armas, T. Harmark and N.A. Obers, Extremal black hole horizons, JHEP 03 (2018) 099 [arXiv:1712.09364] [INSPIRE].

  19. [19]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

  20. [20]

    G. Arcioni and E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings, Phys. Rev. D 72 (2005) 104021 [hep-th/0412118] [INSPIRE].

  21. [21]

    H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [INSPIRE].

  22. [22]

    P. Figueras, K. Murata and H.S. Reall, Black hole instabilities and local Penrose inequalities, Class. Quant. Grav. 28 (2011) 225030 [arXiv:1107.5785] [INSPIRE].

  23. [23]

    K. Tanabe, Black rings at large D, JHEP 02 (2016) 151 [arXiv:1510.02200] [INSPIRE].

  24. [24]

    K. Tanabe, Elastic instability of black rings at large D, arXiv:1605.08116 [INSPIRE].

  25. [25]

    B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet black rings at large D, JHEP 07 (2018) 067 [arXiv:1805.03345] [INSPIRE].

  26. [26]

    B. Cardona and P. Figueras, Critical Kaluza-Klein black holes and black strings in D = 10, JHEP 11 (2018) 120 [arXiv:1806.11129] [INSPIRE].

  27. [27]

    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].

  28. [28]

    R. Emparan et al., The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].

  29. [29]

    O.J.C. Dias, J.E. Santos and B. Way, Rings, ripples and rotation: connecting black holes to black rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].

  30. [30]

    J. Armas and T. Harmark, Black holes and biophysical (mem)-branes, Phys. Rev. D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].

  31. [31]

    J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636] [INSPIRE].

  32. [32]

    J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506] [INSPIRE].

  33. [33]

    J. Armas, How fluids bend: the elastic expansion for higher-dimensional black holes, JHEP 09 (2013) 073 [arXiv:1304.7773] [INSPIRE].

  34. [34]

    J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young modulus of black strings and the fine structure of blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].

  35. [35]

    J. Armas and J. Tarrio, On actions for (entangling) surfaces and DCFTs, JHEP 04 (2018) 100 [arXiv:1709.06766] [INSPIRE].

  36. [36]

    M.M. Caldarelli, J. Camps, B. Goutéraux and K. Skenderis, AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev. D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].

  37. [37]

    M.M. Caldarelli, J. Camps, B. Goutéraux and K. Skenderis, AdS/Ricci-flat correspondence, JHEP 04 (2014) 071 [arXiv:1312.7874] [INSPIRE].

  38. [38]

    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].

  39. [39]

    V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].

  40. [40]

    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].

  41. [41]

    J.E. Santos and B. Way, to appear.

  42. [42]

    J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].

  43. [43]

    J. Armas, N.A. Obers and M. Sanchioni, Gravitational tension, spacetime pressure and black hole volume, JHEP 09 (2016) 124 [arXiv:1512.09106] [INSPIRE].

  44. [44]

    B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP 02 (2012) 010 [arXiv:1110.3764] [INSPIRE].

  45. [45]

    R. Emparan, A. Fernandez-Pique and R. Luna, Geometric polarization of plasmas and Love numbers of AdS black branes, JHEP 09 (2017) 150 [arXiv:1707.02777] [INSPIRE].

  46. [46]

    J. Armas, J. Gath and N.A. Obers, Black branes as piezoelectrics, Phys. Rev. Lett. 109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].

  47. [47]

    J. Armas, J. Gath and N.A. Obers, Electroelasticity of charged black branes, JHEP 10 (2013) 035 [arXiv:1307.0504] [INSPIRE].

  48. [48]

    J. Gath and A.V. Pedersen, Viscous asymptotically flat Reissner-Nordström black branes, JHEP 03 (2014) 059 [arXiv:1302.5480] [INSPIRE].

  49. [49]

    A. Di Dato, J. Gath and A.V. Pedersen, Probing the hydrodynamic limit of (super)gravity, JHEP 04 (2015) 171 [arXiv:1501.05441] [INSPIRE].

  50. [50]

    J. Armas et al., Forced fluid dynamics from blackfolds in general supergravity backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].

  51. [51]

    J. Armas, J. Gath, A. Jain and A.V. Pedersen, Dissipative hydrodynamics with higher-form symmetry, JHEP 05 (2018) 192 [arXiv:1803.00991] [INSPIRE].

  52. [52]

    G. Grignani et al., Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].

  53. [53]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

  54. [54]

    G. Grignani et al., Thermal string probes in AdS and finite temperature Wilson loops, JHEP 06 (2012) 144 [arXiv:1201.4862] [INSPIRE].

  55. [55]

    J. Armas et al., Thermal giant gravitons, JHEP 11 (2012) 123 [arXiv:1207.2789] [INSPIRE].

  56. [56]

    V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].

  57. [57]

    J. Armas, N.A. Obers and A.V. Pedersen, Null-wave giant gravitons from thermal spinning brane probes, JHEP 10 (2013) 109 [arXiv:1306.2633] [INSPIRE].

  58. [58]

    V. Niarchos and K. Siampos, The black M2-M5 ring intersection spins, PoS(Corfu2012)088 [arXiv:1302.0854] [INSPIRE].

  59. [59]

    J. Armas and M. Blau, Black probes of Schrödinger spacetimes, JHEP 08 (2014) 140 [arXiv:1405.1301] [INSPIRE].

  60. [60]

    D. Giataganas and K. Goldstein, Tension of confining strings at low temperature, JHEP 02 (2015) 123 [arXiv:1411.4995] [INSPIRE].

  61. [61]

    G. Grignani et al., Flowing BIon, Phys. Rev. D 96 (2017) 106023 [arXiv:1710.03562] [INSPIRE].

  62. [62]

    J. Armas et al., Meta-stable non-extremal anti-branes, arXiv:1812.01067 [INSPIRE].

  63. [63]

    J. Armas, (Non)-dissipative hydrodynamics on embedded surfaces, JHEP 09 (2014) 047 [arXiv:1312.0597] [INSPIRE].

  64. [64]

    J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP 10 (2014) 063 [arXiv:1406.7813] [INSPIRE].

  65. [65]

    S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, JHEP 07 (2012) 104 [arXiv:1201.4654] [INSPIRE].

  66. [66]

    N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

  67. [67]

    J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP 06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

  68. [68]

    K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Correspondence to Jay Armas.

Additional information

ArXiv ePrint: 1901.09369

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(NB 416 kb)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armas, J., Parisini, E. Instabilities of thin black rings: closing the gap. J. High Energ. Phys. 2019, 169 (2019). https://doi.org/10.1007/JHEP04(2019)169

Download citation

Keywords

  • Black Holes
  • Black Holes in String Theory
  • p-branes