Advertisement

Supersymmetric dyonic strings in 6-dimensions from 3-dimensions

  • Nihat Sadik DegerEmail author
  • Nicolò Petri
  • Dieter Van den Bleeken
Open Access
Regular Article - Theoretical Physics
  • 48 Downloads

Abstract

It was shown in arXiv:1410.7168 that compactifying D = 6, \( \mathcal{N}=\left(1,0\right) \) ungauged supergravity coupled to a single tensor multiplet on S3 one gets a particular D = 3, \( \mathcal{N}=4 \) gauged supergravity which is a consistent reduction. We construct two supersymmetric black string solutions in this 3-dimensional model with one and two active scalars respectively. Uplifting the first, one gets a dyonic string solution in D = 6 that has been known for a long time. Whereas, uplifting the second solution, one finds a very interesting configuration where magnetic strings are located uniformly on a circle in a plane within the 4-dimensional flat transverse space and electric strings are distributed homogeneously inside this circle. Both solutions have AdS3 × S3 limits.

Keywords

AdS-CFT Correspondence Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Nishino and E. Sezgin, The Complete N = 2, d = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].
  2. [2]
    J.B. Gutowski, D. Martelli and H.S. Reall, All Supersymmetric solutions of minimal supergravity in six-dimensions, Class. Quant. Grav. 20 (2003) 5049 [hep-th/0306235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Cariglia and O.A.P. Mac Conamhna, The General form of supersymmetric solutions of N = (1,0) U(1) and SU(2) gauged supergravities in six-dimensions, Class. Quant. Grav. 21 (2004)3171 [hep-th/0402055] [INSPIRE].
  4. [4]
    M. Akyol and G. Papadopoulos, Spinorial geometry and Killing spinor equations of 6-D supergravity, Class. Quant. Grav. 28 (2011) 105001 [arXiv:1010.2632] [INSPIRE].
  5. [5]
    P.A. Cano and T. Ortín, All the supersymmetric solutions of ungauged \( \mathcal{N}=\left(1,0\right) \) , d = 6 supergravity, arXiv:1804.04945 [INSPIRE].
  6. [6]
    H. Het Lam and S. Vandoren, BPS solutions of six-dimensional (1, 0) supergravity coupled to tensor multiplets, JHEP 06 (2018) 021 [arXiv:1804.04681] [INSPIRE].
  7. [7]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric Solutions in Six Dimensions: A Linear Structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B.E. Niehoff, O. Vasilakis and N.P. Warner, Multi-Superthreads and Supersheets, JHEP 04 (2013)046 [arXiv:1203.1348] [INSPIRE].
  9. [9]
    N. Bobev, B.E. Niehoff and N.P. Warner, New Supersymmetric Bubbles on AdS 3 × S 3, JHEP 10 (2012)013 [arXiv:1204.1972] [INSPIRE].
  10. [10]
    O. Vasilakis, Corrugated Multi-Supersheets, JHEP 07 (2013) 008 [arXiv:1302.1241] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP 10 (2013) 137 [arXiv:1303.5449] [INSPIRE].
  12. [12]
    M. Shigemori, Perturbative 3-charge microstate geometries in six dimensions, JHEP 10 (2013) 169 [arXiv:1307.3115] [INSPIRE].
  13. [13]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].
  14. [14]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  15. [15]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
  16. [16]
    D. Martelli and J.F. Morales, Bubbling AdS 3, JHEP 02 (2005) 048 [hep-th/0412136] [INSPIRE].
  17. [17]
    J.T. Liu, D. Vaman and W.Y. Wen, Bubbling 1/4 BPS solutions in type IIB and supergravity reductions on S n × S n, Nucl. Phys. B 739 (2006) 285 [hep-th/0412043] [INSPIRE].
  18. [18]
    M. Boni and P.J. Silva, Revisiting the D1/D5 system or bubbling in AdS 3, JHEP 10 (2005) 070 [hep-th/0506085] [INSPIRE].
  19. [19]
    M.J. Duff, S. Ferrara, R.R. Khuri and J. Rahmfeld, Supersymmetry and dual string solitons, Phys. Lett. B 356 (1995) 479 [hep-th/9506057] [INSPIRE].
  20. [20]
    M.J. Duff, H. Lü and C.N. Pope, Heterotic phase transitions and singularities of the gauge dyonic string, Phys. Lett. B 378 (1996) 101 [hep-th/9603037] [INSPIRE].
  21. [21]
    M.J. Duff, H. Lü and C.N. Pope, AdS 3 × S 3 (un)twisted and squashed and an O(2, 2, Z) multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [INSPIRE].
  22. [22]
    R. Güven, J.T. Liu, C.N. Pope and E. Sezgin, Fine tuning and six-dimensional gauged N=(1,0) supergravity vacua, Class. Quant. Grav. 21 (2004) 1001 [hep-th/0306201] [INSPIRE].
  23. [23]
    S. Randjbar-Daemi and E. Sezgin, Scalar potential and dyonic strings in 6-D gauged supergravity, Nucl. Phys. B 692 (2004) 346 [hep-th/0402217] [INSPIRE].
  24. [24]
    D.C. Jong, A. Kaya and E. Sezgin, 6D Dyonic String With Active Hyperscalars, JHEP 11 (2006) 047 [hep-th/0608034] [INSPIRE].
  25. [25]
    N.S. Deger, H. Samtleben, O. Sarioglu and D. Van den Bleeken, A supersymmetric reduction on the three-sphere, Nucl. Phys. B 890 (2014) 350 [arXiv:1410.7168] [INSPIRE].
  26. [26]
    E. Gava, P. Karndumri and K.S. Narain, 3D gauged supergravity from SU(2) reduction of N = 1 6D supergravity, JHEP 09 (2010) 028 [arXiv:1006.4997] [INSPIRE].
  27. [27]
    H. Nicolai and H. Samtleben, Chern-Simons versus Yang-Mills gaugings in three-dimensions, Nucl. Phys. B 668 (2003) 167 [hep-th/0303213] [INSPIRE].
  28. [28]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ -models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].
  29. [29]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities in three-dimensions: A Panoramic overview, hep-th/0403014 [INSPIRE].
  30. [30]
    D. Veberič, Lambert W Function for Applications in Physics, Comput. Phys. Commun. 183 (2012) 2622 [arXiv:1209.0735] [INSPIRE].
  31. [31]
    M. Cvetič, H. Lü and C.N. Pope, Consistent Kaluza-Klein sphere reductions, Phys. Rev. D 62 (2000) 064028 [hep-th/0003286] [INSPIRE].
  32. [32]
    M.S. Bremer, M.J. Duff, H. Lü, C.N. Pope and K.S. Stelle, Instanton cosmology and domain walls from M-theory and string theory, Nucl. Phys. B 543 (1999) 321 [hep-th/9807051] [INSPIRE].
  33. [33]
    P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].
  35. [35]
    M. Cvetič, S.S. Gubser, H. Lü and C.N. Pope, Symmetric potentials of gauged supergravities in diverse dimensions and Coulomb branch of gauge theories, Phys. Rev. D 62 (2000) 086003 [hep-th/9909121] [INSPIRE].
  36. [36]
    I. Bakas, A. Brandhuber and K. Sfetsos, Domain walls of gauged supergravity, M-branes and algebraic curves, Adv. Theor. Math. Phys. 3 (1999) 1657 [hep-th/9912132] [INSPIRE].
  37. [37]
    M. Cvetič, H. Lü, C.N. Pope and A. Sadrzadeh, Consistency of Kaluza-Klein sphere reductions of symmetric potentials, Phys. Rev. D 62 (2000) 046005 [hep-th/0002056] [INSPIRE].
  38. [38]
    M. Cvetič, H. Lü and C.N. Pope, Consistent sphere reductions and universality of the Coulomb branch in the domain wall/QFT correspondence, Nucl. Phys. B 590 (2000) 213 [hep-th/0004201] [INSPIRE].
  39. [39]
    E. Bergshoeff, M. Nielsen and D. Roest, The Domain walls of gauged maximal supergravities and their M-theory origin, JHEP 07 (2004) 006 [hep-th/0404100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP 11 (2017) 021 [arXiv:1709.01107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011 [hep-th/0106012] [INSPIRE].
  42. [42]
    H. Elvang and R. Emparan, Black rings, supertubes and a stringy resolution of black hole nonuniqueness, JHEP 11 (2003) 035 [hep-th/0310008] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A Supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    N.S. Deger and O. Sarioglu, Supersymmetric strings and waves in D = 3, N = 2 matter coupled gauged supergravities, JHEP 12 (2004) 039 [hep-th/0409169] [INSPIRE].
  45. [45]
    N.S. Deger, Renormalization group flows from D = 3, N = 2 matter coupled gauged supergravities, JHEP 11 (2002) 025 [hep-th/0209188] [INSPIRE].
  46. [46]
    O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP 10 (2017) 086 [arXiv:1707.06693] [INSPIRE].
  47. [47]
    G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsBoğaziçi UniversityIstanbulTurkey
  2. 2.Department of PhysicsBoğaziçi UniversityIstanbulTurkey
  3. 3.Institute for Theoretical Physics, KU LeuvenLeuvenBelgium

Personalised recommendations