Advertisement

Effective long distance \( q\overline{q} \) potential in holographic RG flows

  • Jorge Casalderrey-Solana
  • Diego Gutiez
  • Carlos HoyosEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study the \( q\overline{q} \) potential in strongly coupled non-conformal field theories with a non-trivial renormalization group flow via holography. We focus on the properties of this potential at an inter-quark separation L large compared to the characteristic scale of the field theory. These are determined by the leading order IR physics plus a series of corrections, sensitive to the properties of the RG-flow. To determine those corrections, we propose a general method applying holographic Wilsonian renormalization to a dual string. We apply this method to examine in detail two sets of examples, 3 + 1-dimensional theories with an RG flow ending in an IR fixed point; and theories that are confining in the IR, in particular, the Witten QCD and Klebanov-Strassler models. In both cases, we find corrections with a universal dependence on the inter-quark separation. When there is an IR fixed point, that correction decays as a power ∼ 1/L4. We explain that dependence in terms of a double-trace deformation in a one-dimensional defect theory. For a confining theory, the decay is exponential ∼ eM L, with M a scale of the order of the glueball mass. We interpret this correction using an effective flux tube description as produced by a background internal mode excitation induced by sources localized at the endpoints of the flux tube. We discuss how these results could be confronted with lattice QCD data to test whether the description of confinement via the gauge/gravity is qualitatively correct.

Keywords

Gauge-gravity correspondence Wilson, ’t Hooft and Polyakov loops Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Adams et al., Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Brambilla et al., QCD and strongly coupled gauge theories: challenges and perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].
  7. [7]
    M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  8. [8]
    H. Nastase, String theory methods for condensed matter physics, Cambridge University Press, Cambridge U.K. (2017).Google Scholar
  9. [9]
    J. Casalderrey-Solana et al., Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  10. [10]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
  12. [12]
    C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
  14. [14]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].
  16. [16]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    C. Charmousis et al., Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Donos and J.P. Gauntlett, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].
  20. [20]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
  22. [22]
    E. Kiritsis, W. Li and F. Nitti, Holographic RG flow and the quantum effective action, Fortsch. Phys. 62 (2014) 389 [arXiv:1401.0888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    I. Bakas and C. Sourdis, Dirichlet σ-models and mean curvature flow, JHEP 06 (2007) 057 [arXiv:0704.3985] [INSPIRE].
  24. [24]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 superYang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].
  27. [27]
    J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable Anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].CrossRefzbMATHGoogle Scholar
  28. [28]
    A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].
  29. [29]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Behrndt, Domain walls of D = 5 supergravity and fixpoints of N = 1 super-Yang-Mills, Nucl. Phys. B 573 (2000) 127 [hep-th/9907070] [INSPIRE].
  31. [31]
    A. Khavaev and N.P. Warner, A class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].
  32. [32]
    H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2) × U(1) gauged supergravity from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].
  33. [33]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
  34. [34]
    H. Nastase and D. Vaman, On the nonlinear KK reductions on spheres of supergravity theories, Nucl. Phys. B 583 (2000) 211 [hep-th/0002028] [INSPIRE].
  35. [35]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].
  36. [36]
    M. Cvetič et al., Consistent SO(6) reduction of type IIB supergravity on S 5, Nucl. Phys. B 586 (2000) 275 [hep-th/0003103] [INSPIRE].
  37. [37]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    F. Ciceri, B. de Wit and O. Varela, IIB supergravity and the E 6(6) covariant vector-tensor hierarchy, JHEP 04 (2015) 094 [arXiv:1412.8297] [INSPIRE].
  39. [39]
    A. Baguet, O. Hohm and H. Samtleben, Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].
  40. [40]
    K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].
  41. [41]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J. Polchinski and J. Sully, Wilson loop renormalization group flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Y. Kinar, E. Schreiber and J. Sonnenschein, \( Q\overline{Q} \) potential from strings in curved space-time: classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [INSPIRE].
  44. [44]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].
  45. [45]
    D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].
  46. [46]
    A. Celi et al., On the fakeness of fake supergravity, Phys. Rev. D 71 (2005) 045009 [hep-th/0410126] [INSPIRE].
  47. [47]
    M. Zagermann, N = 4 fake supergravity, Phys. Rev. D 71 (2005) 125007 [hep-th/0412081] [INSPIRE].
  48. [48]
    K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    E. Kiritsis, F. Nitti and L. Silva Pimenta, Exotic RG flows from holography, Fortsch. Phys. 65 (2017) 1600120 [arXiv:1611.05493] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    F. Nitti, L. Silva Pimenta and D.A. Steer, On multi-field flows in gravity and holography, JHEP 07 (2018) 022 [arXiv:1711.10969] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].
  53. [53]
    A. Brandhuber et al., Wilson loops, confinement and phase transitions in large N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    A. Loewy and J. Sonnenschein, On the holographic duals of N = 1 gauge dynamics, JHEP 08 (2001) 007 [hep-th/0103163] [INSPIRE].
  55. [55]
    C. Núñez, M. Piai and A. Rago, Wilson loops in string duals of walking and flavored systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].
  56. [56]
    E. Caceres and R. Hernandez, Glueball masses for the deformed conifold theory, Phys. Lett. B 504 (2001) 64 [hep-th/0011204] [INSPIRE].
  57. [57]
    F. Bigazzi, A.L. Cotrone, L. Martucci and L.A. Pando Zayas, Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings, Phys. Rev. D 71 (2005) 066002 [hep-th/0409205] [INSPIRE].
  58. [58]
    Y. Kinar, E. Schreiber, J. Sonnenschein and N. Weiss, Quantum fluctuations of Wilson loops from string models, Nucl. Phys. B 583 (2000) 76 [hep-th/9911123] [INSPIRE].
  59. [59]
    O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065 [arXiv:1008.2636] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    A.M. Polyakov, Fine structure of strings, Nucl. Phys. B 268 (1986) 406 [INSPIRE].
  62. [62]
    H. Kleinert, The membrane properties of condensing strings, Phys. Lett. B 174 (1986) 335 [INSPIRE].
  63. [63]
    M. Caselle, M. Panero, R. Pellegrini and D. Vadacchino, A different kind of string, JHEP 01 (2015) 105 [arXiv:1406.5127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    B.B. Brandt, Spectrum of the open QCD flux tube and its effective string description I: 3d static potential in SU(N = 2, 3), JHEP 07 (2017) 008 [arXiv:1705.03828] [INSPIRE].
  65. [65]
    B.B. Brandt, Spectrum of the open QCD flux tube and its effective string description, arXiv:1811.11779 [INSPIRE].
  66. [66]
    B. Bringoltz and M. Teper, String tensions of SU(N) gauge theories in 2 + 1 dimensions, PoS LAT2006 (2006) 041 [hep-lat/0610035] [INSPIRE].
  67. [67]
    B.B. Brandt and P. Majumdar, Spectrum of the QCD flux tube in 3d SU(2) lattice gauge theory, Phys. Lett. B 682 (2009) 253 [arXiv:0905.4195] [INSPIRE].
  68. [68]
    B.B. Brandt, Probing boundary-corrections to Nambu-Goto open string energy levels in 3d SU(2) gauge theory, JHEP 02 (2011) 040 [arXiv:1010.3625] [INSPIRE].
  69. [69]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].
  70. [70]
    B.B. Brandt and M. Meineri, Effective string description of confining flux tubes, Int. J. Mod. Phys. A 31 (2016) 1643001 [arXiv:1603.06969] [INSPIRE].
  71. [71]
    O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    O. Aharony, M. Field and N. Klinghoffer, The effective string spectrum in the orthogonal gauge, JHEP 04 (2012) 048 [arXiv:1111.5757] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    S. Dubovsky, R. Flauger and V. Gorbenko, Effective string theory revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].
  76. [76]
    S. Dubovsky, R. Flauger and V. Gorbenko, Flux tube spectra from approximate integrability at low energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S. Dubovsky and V. Gorbenko, Towards a theory of the QCD string, JHEP 02 (2016) 022 [arXiv:1511.01908] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Athenodorou and M. Teper, On the mass of the world-sheetaxionin SU(N) gauge theories in 3 + 1 dimensions, Phys. Lett. B 771 (2017) 408 [arXiv:1702.03717] [INSPIRE].
  79. [79]
    M. Kruczenski, L.A. Pando Zayas, J. Sonnenschein and D. Vaman, Regge trajectories for mesons in the holographic dual of large-N c QCD, JHEP 06 (2005) 046 [hep-th/0410035] [INSPIRE].
  80. [80]
    J. Sonnenschein and D. Weissman, Rotating strings confronting PDG mesons, JHEP 08 (2014) 013 [arXiv:1402.5603] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    N. Brambilla, M. Groher, H.E. Martinez and A. Vairo, Effective string theory and the long-range relativistic corrections to the quark-antiquark potential, Phys. Rev. D 90 (2014) 114032 [arXiv:1407.7761] [INSPIRE].
  82. [82]
    A. Ficnar, S.S. Gubser and M. Gyulassy, Shooting string holography of jet quenching at RHIC and LHC, Phys. Lett. B 738 (2014) 464 [arXiv:1311.6160] [INSPIRE].
  83. [83]
    P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].
  84. [84]
    J. Casalderrey-Solana et al., A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  85. [85]
    W.A. Horowitz, Fluctuating heavy quark energy loss in a strongly coupled quark-gluon plasma, Phys. Rev. D 91 (2015) 085019 [arXiv:1501.04693] [INSPIRE].
  86. [86]
    K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC)Universitat de BarcelonaBarcelonaSpain
  2. 2.Department of PhysicsUniversidad de OviedoOviedoSpain

Personalised recommendations