Advertisement

Cosmological production of dark nuclei

  • Michele Redi
  • Andrea TesiEmail author
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We study the formation of Dark Matter nuclei in scenarios where DM particles are baryons of a new confining gauge force. The dark nucleosynthesis is analogous to the formation of light elements in the SM and requires as a first step the formation of dark deuterium. We compute this process from first principles, using the formalism of pion-less effective theory for nucleon-nucleon interactions. This controlled effective field theory expansion allows us to systematically compute the cross sections for generic SM representations under the assumption of shallow bound states. In the context of vector-like confinement models we find that, for nucleon masses in the TeV range, baryonic DM made of electro-weak constituents can form a significant fraction of dark deuterium and a much smaller fraction of dark tritium. Formation of dark nuclei can also lead to monochromatic photon lines in indirect detection. Models with singlets do not undergo dark nucleosynthesis unless a dark photon is added to the theory.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark Matter as a weakly coupled Dark Baryon, JHEP 10 (2017) 210 [arXiv:1707.05380] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Kilic, T. Okui and R. Sundrum, Vectorlike Confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei. II. Nuclear spectroscopy in two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
  7. [7]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D.B. Kaplan, M.J. Savage and M.B. Wise, A new expansion for nucleon-nucleon interactions, Phys. Lett. B 424 (1998) 390 [nucl-th/9801034] [INSPIRE].
  9. [9]
    E. Hardy, R. Lasenby, J. March-Russell and S.M. West, Big Bang Synthesis of Nuclear Dark Matter, JHEP 06 (2015) 011 [arXiv:1411.3739] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Hardy, R. Lasenby, J. March-Russell and S.M. West, Signatures of Large Composite Dark Matter States, JHEP 07 (2015) 133 [arXiv:1504.05419] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett. B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Contino, A. Mitridate, A. Podo and M. Redi, Gluequark Dark Matter, JHEP 02 (2019) 187 [arXiv:1811.06975] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Bai and R.J. Hill, Weakly Interacting Stable Pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Barducci, S. De Curtis, M. Redi and A. Tesi, An almost elementary Higgs: Theory and Practice, JHEP 08 (2018) 017 [arXiv:1805.12578] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G.D. Kribs, A. Martin, B. Ostdiek and T. Tong, Dark Mesons at the LHC, arXiv:1809.10184 [INSPIRE].
  18. [18]
    NPLQCD collaboration, Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry, Phys. Rev. D 87 (2013) 034506 [arXiv:1206.5219] [INSPIRE].
  19. [19]
    V. De Luca, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Colored Dark Matter, Phys. Rev. D 97 (2018) 115024 [arXiv:1801.01135] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.D. McDermott, Is Self-Interacting Dark Matter Undergoing Dark Fusion?, Phys. Rev. Lett. 120 (2018) 221806 [arXiv:1711.00857] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. D 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
  22. [22]
    M.B. Wise and Y. Zhang, Yukawa Bound States of a Large Number of Fermions, JHEP 02 (2015) 023 [Erratum ibid. 10 (2015) 165] [arXiv:1411.1772] [INSPIRE].
  23. [23]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Nuclear Structure of Bound States of Asymmetric Dark Matter, Phys. Rev. D 96 (2017) 096012 [arXiv:1707.02313] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Astrophysical Signatures of Asymmetric Dark Matter Bound States, Phys. Rev. D 98 (2018) 096001 [arXiv:1805.04512] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Cosmological Signatures of a Mirror Twin Higgs, JHEP 09 (2018) 163 [arXiv:1803.03263] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-Abelian Dark Forces and the Relic Densities of Dark Glueballs, Phys. Rev. D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.B. Kaplan, Five lectures on effective field theory nucl-th/0510023 [INSPIRE].
  28. [28]
    H.A. Bethe, Theory of the Effective Range in Nuclear Scattering, Phys. Rev. 76 (1949) 38 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    H.A. Bethe and C. Longmire, The effective range of nuclear forces 2. photo-disintegration of the deuteron, Phys. Rev. 77 (1950) 647 [INSPIRE].
  30. [30]
    M.J. Savage, K.A. Scaldeferri and M.B. Wise, n + pd + γ in effective field theory, Nucl. Phys. A 652 (1999) 273 [nucl-th/9811029] [INSPIRE].
  31. [31]
    G. Rupak, Precision calculation of npdγ cross-section for big bang nucleosynthesis, Nucl. Phys. A 678 (2000) 405 [nucl-th/9911018] [INSPIRE].
  32. [32]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].
  33. [33]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part II. Coulomb resummation, JHEP 02 (2018) 150 [arXiv:1708.07155] [INSPIRE].
  34. [34]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects, JHEP 05 (2018) 062 [arXiv:1712.07142] [INSPIRE].
  35. [35]
    R. Iengo, Sommerfeld enhancement: General results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    K. Blum, R. Sato and T.R. Slatyer, Self-consistent Calculation of the Sommerfeld Enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R.A. Alpher, H. Bethe and G. Gamow, The origin of chemical elements, Phys. Rev. 73 (1948) 803 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Redi and A. Tesi, in preparation.Google Scholar
  39. [39]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  40. [40]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Cirelli, Y. Gouttenoire, K. Petraki and F. Sala, Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays, JCAP 02 (2019) 014 [arXiv:1811.03608] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  44. [44]
    D.B. Kaplan, M.J. Savage and M.B. Wise, Two nucleon systems from effective field theory, Nucl. Phys. B 534 (1998) 329 [nucl-th/9802075] [INSPIRE].
  45. [45]
    D.B. Kaplan, M.J. Savage and M.B. Wise, Nucleon-nucleon scattering from effective field theory, Nucl. Phys. B 478 (1996) 629 [nucl-th/9605002] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations