Advertisement

How heavy can neutralino dark matter be?

  • Hajime FukudaEmail author
  • Feng Luo
  • Satoshi Shirai
Open Access
Regular Article - Theoretical Physics

Abstract

What is the upper limit of the mass of the neutralino dark matter whose thermal relic is consistent with the observation? If the neutralino dark matter and colored sparticles are extremely degenerated in mass, with a mass difference less than the QCD scale, the dark matter annihilation is significantly increased and enjoys the “second freeze-out” after the QCD phase transition. In this case, the neutralino dark matter with a mass much greater than 100 TeV can realize the correct dark matter abundance. We study the dark matter abundance and its detection in the case of such highly degenerated mass spectrum of the neutralino dark matter and colored supersymmetric particles.

Keywords

Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  2. [2]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
  3. [3]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  4. [4]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, in 11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003) Tucson, Arizona, June 5-10, 2003, 2003, hep-ph/0306127 [INSPIRE].
  5. [5]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
  6. [6]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  8. [8]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  9. [9]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  10. [10]
    L.J. Hall and Y. Nomura, Spread Supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].
  11. [11]
    L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Nomura and S. Shirai, Supersymmetry from Typicality: TeV-Scale Gauginos and PeV-Scale Squarks and Sleptons, Phys. Rev. Lett. 113 (2014) 111801 [arXiv:1407.3785] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].
  14. [14]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].
  15. [15]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  17. [17]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  18. [18]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  19. [19]
    J. Hisano, S. Matsumoto, O. Saito and M. Senami, Heavy wino-like neutralino dark matter annihilation into antiparticles, Phys. Rev. D 73 (2006) 055004 [hep-ph/0511118] [INSPIRE].
  20. [20]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].
  21. [21]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
  22. [22]
    J. Hisano, K. Ishiwata and N. Nagata, Direct Search of Dark Matter in High-Scale Supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].
  23. [23]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
  25. [25]
    M.R. Buckley, L. Randall and B. Shuve, LHC Searches for Non-Chiral Weakly Charged Multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Asai, T. Moroi, K. Nishihara and T.T. Yanagida, Testing the Anomaly Mediation at the LHC, Phys. Lett. B 653 (2007) 81 [arXiv:0705.3086] [INSPIRE].
  27. [27]
    S. Asai, T. Moroi and T.T. Yanagida, Test of Anomaly Mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [INSPIRE].
  28. [28]
    S. Asai, Y. Azuma, O. Jinnouchi, T. Moroi, S. Shirai and T.T. Yanagida, Mass Measurement of the Decaying Bino at the LHC, Phys. Lett. B 672 (2009) 339 [arXiv:0807.4987] [INSPIRE].
  29. [29]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  30. [30]
    N. Nagata and S. Shirai, Higgsino Dark Matter in High-Scale Supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders, Phys. Lett. B 781 (2018) 306 [arXiv:1703.09675] [INSPIRE].
  32. [32]
    S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweakly Interacting Particles at the High-Luminosity Large Hadron Collider, JHEP 06 (2018) 049 [arXiv:1711.05449] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweak-Interacting Particles with Mono-Lepton Signatures at Hadron Colliders, JHEP 03 (2019) 076 [arXiv:1810.12234] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Chigusa, Y. Ema and T. Moroi, Probing electroweakly interacting massive particles with Drell-Yan process at 100 TeV hadron colliders, Phys. Lett. B 789 (2019) 106 [arXiv:1810.07349] [INSPIRE].
  35. [35]
    L. Di Luzio, R. Gröber and G. Panico, Probing new electroweak states via precision measurements at the LHC and future colliders, JHEP 01 (2019) 011 [arXiv:1810.10993] [INSPIRE].
  36. [36]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
  37. [37]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  38. [38]
    S. Profumo, TeV gamma-rays and the largest masses and annihilation cross sections of neutralino dark matter, Phys. Rev. D 72 (2005) 103521 [astro-ph/0508628] [INSPIRE].
  39. [39]
    R.C. Gilmore, Mass limits on neutralino dark matter, Phys. Rev. D 76 (2007) 043520 [arXiv:0705.2610] [INSPIRE].
  40. [40]
    H. Fukuda and S. Shirai, to appear.Google Scholar
  41. [41]
    K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].
  42. [42]
    J. Ellis, F. Luo and K.A. Olive, Gluino Coannihilation Revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].
  43. [43]
    J. Ellis, J.L. Evans, F. Luo and K.A. Olive, Scenarios for Gluino Coannihilation, JHEP 02 (2016) 071 [arXiv:1510.03498] [INSPIRE].
  44. [44]
    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    N. Nagata, H. Otono and S. Shirai, Probing bino-gluino coannihilation at the LHC, Phys. Lett. B 748 (2015) 24 [arXiv:1504.00504] [INSPIRE].
  46. [46]
    N. Nagata, H. Otono and S. Shirai, Cornering Compressed Gluino at the LHC, JHEP 03 (2017) 025 [arXiv:1701.07664] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S.A.R. Ellis and B. Zheng, Reaching for squarks and gauginos at a 100 TeV p-p collider, Phys. Rev. D 92 (2015) 075034 [arXiv:1506.02644] [INSPIRE].
  48. [48]
    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].
  49. [49]
    K. Harigaya, M. Ibe, K. Kaneta, W. Nakano and M. Suzuki, Thermal Relic Dark Matter Beyond the Unitarity Limit, JHEP 08 (2016) 151 [arXiv:1606.00159] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Ellis, J.L. Evans, F. Luo, K.A. Olive and J. Zheng, Stop Coannihilation in the CMSSM and SubGUT Models, Eur. Phys. J. C 78 (2018) 425 [arXiv:1801.09855] [INSPIRE].
  51. [51]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    J. Ellis, K.A. Olive and J. Zheng, The Extent of the Stop Coannihilation Strip, Eur. Phys. J. C 74 (2014) 2947 [arXiv:1404.5571] [INSPIRE].
  53. [53]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].
  54. [54]
    A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].
  55. [55]
    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matters secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].
  56. [56]
    S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. El Hedri, A. Kaminska and M. de Vries, A Sommerfeld Toolbox for Colored Dark Sectors, Eur. Phys. J. C 77 (2017) 622 [arXiv:1612.02825] [INSPIRE].
  59. [59]
    K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    S. El Hedri, A. Kaminska, M. de Vries and J. Zurita, Simplified Phenomenology for Colored Dark Sectors, JHEP 04 (2017) 118 [arXiv:1703.00452] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Pierce, N.R. Shah and S. Vogl, Stop Co-Annihilation in the Minimal Supersymmetric Standard Model Revisited, Phys. Rev. D 97 (2018) 023008 [arXiv:1706.01911] [INSPIRE].
  62. [62]
    W.-Y. Keung, I. Low and Y. Zhang, Reappraisal of dark matter co-annihilating with a top or bottom partner, Phys. Rev. D 96 (2017) 015008 [arXiv:1703.02977] [INSPIRE].
  63. [63]
    M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521 [arXiv:1705.09292] [INSPIRE].
  64. [64]
    J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
  65. [65]
    S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    S. El Hedri and M. de Vries, Cornering Colored Coannihilation, JHEP 10 (2018) 102 [arXiv:1806.03325] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Binder, L. Covi and K. Mukaida, Dark Matter Sommerfeld-enhanced annihilation and Bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].
  68. [68]
    S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Biondini and S. Vogl, Coloured coannihilations: Dark matter phenomenology meets non-relativistic EFTs, JHEP 02 (2019) 016 [arXiv:1811.02581] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Harz and K. Petraki, Higgs-mediated bound states in dark-matter models, arXiv:1901.10030 [INSPIRE].
  71. [71]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of Relic Densities in the Early Universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].
  74. [74]
    P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].
  76. [76]
    M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP 06 (2018) 135 [arXiv:1802.07720] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C. Jacoby and S. Nussinov, The Relic Abundance of Massive Colored Particles after a Late Hadronic Annihilation Stage, arXiv:0712.2681 [INSPIRE].
  78. [78]
    J.J. Sakurai, Modern Quantum Mechanics, Revised Edition, first edition, Addison Wesley, (1993).Google Scholar
  79. [79]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  80. [80]
    M. Kusakabe and T. Takesako, Resonant annihilation of long-lived massive colored particles through hadronic collisions, Phys. Rev. D 85 (2012) 015005 [arXiv:1112.0860] [INSPIRE].
  81. [81]
    A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
  82. [82]
    S.S.M. Wong, Introductory nuclear physics, Wiley-VCH Verlag GmbH, (1998).Google Scholar
  83. [83]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  84. [84]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  85. [85]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].
  86. [86]
    P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].
  87. [87]
    R. Sato, S. Shirai and K. Tobioka, Gluino Decay as a Probe of High Scale Supersymmetry Breaking, JHEP 11 (2012) 041 [arXiv:1207.3608] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    R. Sato, S. Shirai and K. Tobioka, Flavor of Gluino Decay in High-Scale Supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    H. Fukuda, F. Luo and S. Shirai, in preparation.Google Scholar
  90. [90]
    K. Saikawa and S. Shirai, Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model, JCAP 05 (2018) 035 [arXiv:1803.01038] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  92. [92]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  93. [93]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].
  94. [94]
    P. Gondolo and S. Scopel, On the sbottom resonance in dark matter scattering, JCAP 10 (2013) 032 [arXiv:1307.4481] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    J. Hisano, K. Ishiwata and N. Nagata, Direct Detection of Dark Matter Degenerate with Colored Particles in Mass, Phys. Lett. B 706 (2011) 208 [arXiv:1110.3719] [INSPIRE].
  96. [96]
    ETM collaboration, Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical Point, Phys. Rev. Lett. 116 (2016) 252001 [arXiv:1601.01624] [INSPIRE].
  97. [97]
    K. Kovarik et al., nCTEQ15Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037 [arXiv:1509.00792] [INSPIRE].
  98. [98]
    C. Gross, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Abundance of Colored Relics, Phys. Rev. D 99 (2019) 016024 [arXiv:1811.08418] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of Tokyo Institutes for Advanced Study, The University of TokyoKashiwaJapan
  2. 2.School of Physics and AstronomySun Yat-sen UniversityZhuhaiChina

Personalised recommendations