Four-dimensional traversable wormholes and bouncing cosmologies in vacuum

  • Andrés AnabalónEmail author
  • Julio Oliva
Open Access
Regular Article - Theoretical Physics


In this letter we point out the existence of solutions to General Relativity with a negative cosmological constant in four dimensions, which contain solitons as well as traversable wormholes. The latter connect two asymptotically locally AdS4 spacetimes. At every constant value of the radial coordinate the spacetime is a spacelike warped AdS3. We compute the dual energy momentum tensor at each boundary showing that it yields different results. We also show that these vacuum wormholes can have more than one throat and that they are indeed traversable by computing the time it takes for a light signal to go from one boundary to the other, as seen by a geodesic observer. We generalize the wormholes to include rotation and charge. When the cosmological constant is positive we find a cosmology that is everywhere regular, has either one or two bounces and that for late and early times matches the Friedmann-Lemaître-Robertson-Walker metric with spherical topology and an exponential scale factor.


AdS-CFT Correspondence Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Phys. Rev. 48 (1935) 73 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Visser, Lorentzian wormholes: from Einstein to Hawking, AIP, Woodbury, U.S.A. (1995).Google Scholar
  3. [3]
    M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines and the weak energy condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  5. [5]
    E. Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635 [hep-th/9910245] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. 115B (1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076] [INSPIRE].
  9. [9]
    M. Novello and S.E.P. Bergliaffa, Bouncing cosmologies, Phys. Rept. 463 (2008) 127 [arXiv:0802.1634] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    Y.-F. Cai, D.A. Easson and R. Brandenberger, Towards a nonsingular bouncing cosmology, JCAP 08 (2012) 020 [arXiv:1206.2382] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    O. Coussaert and M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a negative cosmological constant, in The black hole: 25 years after, C. Teitelboim ed., World Scientific, Singapore (1998), hep-th/9407181 [INSPIRE].
  14. [14]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary terms and three-point functions: an AdS/CFT puzzle resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Anninos, Sailing from warped AdS 3 to warped dS 3 in topologically massive gravity, JHEP 02 (2010) 046 [arXiv:0906.1819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.F. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].
  20. [20]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Caceres, A.S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP 12 (2018) 005 [arXiv:1807.07239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L. Andrianopoli et al., Unconventional supersymmetry at the boundary of AdS 4 supergravity, JHEP 04 (2018) 007 [arXiv:1801.08081] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes LiberalesUniversidad Adolfo IbáñezViña del MarChile
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  3. 3.Departamento de FísicaUniversidad de ConcepciónConcepciónChile

Personalised recommendations