Advertisement

All-loop cuts from the Amplituhedron

  • Cameron Langer
  • Akshay Yelleshpur SrikantEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

The definition of the amplituhedron in terms of sign flips involves both one-loop constraints and the “mutual positivity” constraint. To gain an understanding of the all-loop integrand of \( \mathcal{N}=4 \) sYM requires understanding the crucial role played by mutual positivity. This paper is an attempt towards developing a procedure to introduce the complexities of mutual positivity in a systematic and controlled manner. As the first step in this procedure, we trivialize these constraints and understand the geometry underlying the remaining constraints to all loops and multiplicities. We present a host of configurations which correspond to various faces of the amplituhedron. The results we derive are valid at all multiplicities and loop orders for the maximally helicity violating (MHV) configurations. These include detailed derivations for the results in [1]. We conclude by indicating how one might move beyond trivial mutual positivity by presenting a series of configuration which re-introduce it bit by bit.

Keywords

Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Arkani-Hamed, C. Langer, A. Yelleshpur Srikant and J. Trnka, Deep into the Amplituhedron: amplitude singularities at all loops and legs, Phys. Rev. Lett. 122 (2019) 051601 [arXiv:1810.08208] [INSPIRE].
  2. [2]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605.
  4. [4]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Arkani-Hamed, Y. Bai and T. Lam, Positive geometries and canonical forms, JHEP 11 (2017) 039 [arXiv:1703.04541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Z. Bern et al., Logarithmic singularities and maximally supersymmetric amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Z. Bern et al., Evidence for a nonplanar amplituhedron, JHEP 06 (2016) 098 [arXiv:1512.08591] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual conformal structure beyond the planar limit, Phys. Rev. Lett. 121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed et al., Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett. 113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Ferro et al., Yangian symmetry for the tree amplituhedron, J. Phys. A 50 (2017) 294005 [arXiv:1612.04378] [INSPIRE].
  11. [11]
    L. Ferro, T. Lukowski and M. Parisi, Amplituhedron meets Jeffrey-Kirwan residue, J. Phys. A 52 (2019) 045201 [arXiv:1805.01301] [INSPIRE].
  12. [12]
    M. Enciso, Volumes of polytopes without triangulations, JHEP 10 (2017) 071 [arXiv:1408.0932] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Enciso, Logarithms and volumes of polytopes, JHEP 04 (2018) 016 [arXiv:1612.07370] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.N. Karp, L.K. Williams and Y.X. Zhang, Decompositions of amplituhedra, arXiv:1708.09525 [INSPIRE].
  15. [15]
    S.N. Karp and L.K. Williams, The m = 1 amplituhedron and cyclic hyperplane arrangements, arXiv:1608.08288 [INSPIRE].
  16. [16]
    Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Y. Bai, S. He and T. Lam, The amplituhedron and the one-loop grassmannian measure, JHEP 01 (2016) 112 [arXiv:1510.03553] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the Amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Rao, 4-particle Amplituhedron at 3-loop and its Mondrian diagrammatic implication, JHEP 06 (2018) 038 [arXiv:1712.09990] [INSPIRE].
  21. [21]
    Y. An, Y. Li, Z. Li and J. Rao, All-loop Mondrian diagrammatics and 4-particle Amplituhedron, JHEP 06 (2018) 023 [arXiv:1712.09994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Rao, 4-particle Amplituhedronics for 3-5 loops, arXiv:1806.01765 [INSPIRE].
  23. [23]
    N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in binary, JHEP 01 (2018) 016 [arXiv:1704.05069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. He and C. Zhang, Notes on scattering amplitudes as differential forms, JHEP 10 (2018) 054 [arXiv:1807.11051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering forms and the positive geometry of kinematics, color and the worldsheet, JHEP 05 (2018) 096 [arXiv:1711.09102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Salvatori, 1-loop amplitudes from the halohedron, arXiv:1806.01842 [INSPIRE].
  27. [27]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.L. Bourjaily et al., The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP 03 (2012) 032 [arXiv:1112.6432] [INSPIRE].
  29. [29]
    J.L. Bourjaily, P. Heslop and V.-V. Tran, Perturbation theory at eight loops: novel structures and the breakdown of manifest conformality in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 116 (2016) 191602 [arXiv:1512.07912] [INSPIRE].
  30. [30]
    J.L. Bourjaily, P. Heslop and V.-V. Tran, Amplitudes and correlators to ten loops using simple, graphical bootstraps, JHEP 11 (2016) 125 [arXiv:1609.00007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    N. Arkani-Hamed et al., A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Quantum Mathematics and Physics (QMAP)University of CaliforniaDavisU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations