Advertisement

p-adic Mellin amplitudes

  • Christian Baadsgaard Jepsen
  • Sarthak ParikhEmail author
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

In this paper, we propose a p-adic analog of Mellin amplitudes for scalar operators, and present the computation of the general contact amplitude as well as arbitrary-point tree-level amplitudes for bulk diagrams involving up to three internal lines, and along the way obtain the p-adic version of the split representation formula. These amplitudes share noteworthy similarities with the usual (real) Mellin amplitudes for scalars, but are also significantly simpler, admitting closed-form expressions where none are available over the reals. The dramatic simplicity can be attributed to the absence of descendant fields in the p-adic formulation.

Keywords

AdS-CFT Correspondence Scattering Amplitudes Classical Theories of Gravity Lattice Models of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdS d+1, Phys. Rev. D 58 (1998) 041901 [hep-th/9804035] [INSPIRE].
  6. [6]
    H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097] [INSPIRE].
  7. [7]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006] [INSPIRE].
  8. [8]
    E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS d+1, Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [INSPIRE].
  9. [9]
    H. Liu, Scattering in Anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [INSPIRE].
  10. [10]
    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1, Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [INSPIRE].
  11. [11]
    E. D’Hoker et al., Graviton and gauge boson propagators in AdS d+1, Nucl. Phys. B 562 (1999) 330 [hep-th/9902042] [INSPIRE].
  12. [12]
    E. D’Hoker et al., Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].
  13. [13]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: how to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].
  14. [14]
    E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N =4 SYM and the 4 point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [INSPIRE].
  15. [15]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].
  16. [16]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  17. [17]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A.L. Fitzpatrick et al., A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Nandan, A. Volovich and C. Wen, On Feynman rules for Mellin amplitudes in AdS/CFT, JHEP 05 (2012) 129 [arXiv:1112.0305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Kharel and G. Siopsis, Tree-level correlators of scalar and vector fields in AdS/CFT, JHEP 11 (2013) 159 [arXiv:1308.2515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    V. Gonçalves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP 10 (2015) 040 [arXiv:1410.4185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from conformal field theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    L.F. Alday, A. Bissi and E. Perlmutter, Holographic reconstruction of AdS exchanges from crossing symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    L.F. Alday and A. Bissi, Loop corrections to supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].
  31. [31]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  32. [32]
    L. Rastelli and X. Zhou, How to succeed at holographic correlators without really trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Faller, S. Sarkar and M. Verma, Mellin amplitudes for fermionic conformal correlators, JHEP 03 (2018) 106 [arXiv:1711.07929] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    H.-Y. Chen, E.-J. Kuo and H. Kyono, Towards spinning Mellin amplitudes, Nucl. Phys. B 931 (2018) 291 [arXiv:1712.07991] [INSPIRE].
  35. [35]
    E.Y. Yuan, Loops in the bulk, arXiv:1710.01361 [INSPIRE].
  36. [36]
    E.Y. Yuan, Simplicity in AdS perturbative dynamics, arXiv:1801.07283 [INSPIRE].
  37. [37]
    S.S. Gubser et al., p-adic AdS/CFT, Commun. Math. Phys. 352 (2017) 1019 [arXiv:1605.01061] [INSPIRE].
  38. [38]
    M. Heydeman, M. Marcolli, I. Saberi and B. Stoica, Tensor networks, p-adic fields and algebraic curves: arithmetic and the AdS 3 /CFT 2 correspondence, Adv. Theor. Math. Phys. 22 (2018) 93 [arXiv:1605.07639] [INSPIRE].
  39. [39]
    S.S. Gubser and S. Parikh, Geodesic bulk diagrams on the Bruhat-Tits tree, Phys. Rev. D 96 (2017) 066024 [arXiv:1704.01149] [INSPIRE].
  40. [40]
    Y.I. Manin and M. Marcolli, Holography principle and arithmetic of algebraic curves, Adv. Theor. Math. Phys. 5 (2002) 617 [hep-th/0201036] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S.S. Gubser et al., Edge length dynamics on graphs with applications to p-adic AdS/CFT, JHEP 06 (2017) 157 [arXiv:1612.09580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S.S. Gubser, C. Jepsen, S. Parikh and B. Trundy, O(N) and O(N) and O(N), JHEP 11 (2017) 107 [arXiv:1703.04202] [INSPIRE].
  43. [43]
    P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].
  44. [44]
    P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [INSPIRE].
  45. [45]
    L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean string dynamics, Nucl. Phys. B 302 (1988) 365 [INSPIRE].
  46. [46]
    L. Brekke, P.G.O. Freund, E. Melzer and M. Olson, Adelic string N point amplitudes, Phys. Lett. B 216 (1989) 53 [INSPIRE].
  47. [47]
    L. Brekke and P.G.O. Freund, p-adic numbers in physics, Phys. Rept. 233 (1993) 1 [INSPIRE].
  48. [48]
    P. Dutta, D. Ghoshal and A. Lala, Notes on exchange interactions in holographic p-adic CFT, Phys. Lett. B 773 (2017) 283 [arXiv:1705.05678] [INSPIRE].
  49. [49]
    D. Ghoshal, p-adic string theories provide lattice discretization to the ordinary string worldsheet, Phys. Rev. Lett. 97 (2006) 151601 [hep-th/0606082] [INSPIRE].
  50. [50]
    M. Bocardo-Gaspar, H. García-Compeán and W.A. Zúñiga-Galindo, On p-adic string amplitudes in the limit p approaches to one, JHEP 08 (2018) 043 [arXiv:1712.08725] [INSPIRE].
  51. [51]
    E. Melzer, Nonarchimedean conformal field theories, Int. J. Mod. Phys. A 4 (1989) 4877 [INSPIRE].
  52. [52]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    I.M. Gel’fand, M.I. Graev and I. Piatetski-Shapiro, Representation theory and automorphic functions, American Mathematical Society, U.S.A. (1968).Google Scholar
  54. [54]
    K. Symanzik, On calculations in conformal invariant field theories, Lett. Nuovo Cim. 3 (1972) 734 [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    C.B. Jepsen and S. Parikh, Recursion relations in p-adic Mellin space, arXiv:1812.09801 [INSPIRE].
  56. [56]
    A.V. Zabrodin, Nonarchimedean strings and Bruhat-Tits trees, Commun. Math. Phys. 123 (1989) 463 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    A. Guilloux, Yet another p-adic hyperbolic disc, Groups Geom. Dyn. 10 (2016) 9 [arXiv:1610.00959].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S. Bhowmick and K. Ray, Holography on local fields via Radon transform, JHEP 09 (2018) 126 [arXiv:1805.07189] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].
  60. [60]
    L. Susskind, Holography in the flat space limit, AIP Conf. Proc. 493 (1999) 98 [hep-th/9901079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
  62. [62]
    T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills correlators, Phys. Rev. D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].
  63. [63]
    S. Giombi, C. Sleight and M. Taronna, Spinning AdS loop diagrams: two point functions, JHEP 06 (2018) 030 [arXiv:1708.08404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    C. Sleight and M. Taronna, Spinning Witten diagrams, JHEP 06 (2017) 100 [arXiv:1702.08619] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    M.S. Costa and T. Hansen, AdS weight shifting operators, JHEP 09 (2018) 040 [arXiv:1805.01492] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    C. Sleight and M. Taronna, Spinning Mellin bootstrap: conformal partial waves, crossing kernels and applications, Fortsch. Phys. 66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  67. [67]
    C. Sleight and M. Taronna, Anomalous dimensions from crossing kernels, JHEP 11 (2018) 089 [arXiv:1807.05941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    S.S. Gubser et al., Melonic theories over diverse number systems, Phys. Rev. D 98 (2018) 126007 [arXiv:1707.01087] [INSPIRE].
  69. [69]
    P. Ruelle, E. Thiran, D. Verstegen and J. Weyers, Adelic string and superstring amplitudes, Mod. Phys. Lett. A 4 (1989) 1745 [INSPIRE].
  70. [70]
    A.V. Marshakov and A.V. Zabrodin, New p-adic string amplitudes, Mod. Phys. Lett. A 5 (1990) 265 [INSPIRE].
  71. [71]
    F. Qu and Y.-h. Gao, Scalar fields on pAdS, Phys. Lett. B 786 (2018) 165 [arXiv:1806.07035] [INSPIRE].
  72. [72]
    E.W. Barnes, A new development of the theory of the hypergeometric functions, Proc. London Math. Soc. 1 (1908) 141.MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    E.W. Barnes, A transformation of generalised hypergeometric series, Quart. J. Math. 41 (1910) 136.zbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations