Advertisement

A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector

  • Nathan P. Hartland
  • Fabio Maltoni
  • Emanuele R. Nocera
  • Juan Rojo
  • Emma Slade
  • Eleni Vryonidou
  • Cen ZhangEmail author
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We present a novel framework for carrying out global analyses of the Standard Model Effective Field Theory (SMEFT) at dimension-six: SMEFiT. This approach is based on the Monte Carlo replica method for deriving a faithful estimate of the experimental and theoretical uncertainties and enables one to construct the probability distribution in the space of the SMEFT degrees of freedom. As a proof of concept of the SMEFiT methodology, we present a first study of the constraints on the SMEFT provided by top quark production measurements from the LHC. Our analysis includes more than 30 independent measurements from 10 different processes at \( \sqrt{s} \) = 8 and 13 TeV such as inclusive \( t\overline{t} \) and single-top production and the associated production of top quarks with weak vector bosons and the Higgs boson. State-of-the-art theoretical calculations are adopted both for the Standard Model and for the SMEFT contributions, where in the latter case NLO QCD corrections are included for the majority of processes. We derive bounds for the 34 degrees of freedom relevant for the interpretation of the LHC top quark data and compare these bounds with previously reported constraints. Our study illustrates the significant potential of LHC precision measurements to constrain physics beyond the Standard Model in a model-independent way, and paves the way towards a global analysis of the SMEFT.

Keywords

Beyond Standard Model Effective Field Theories Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSGoogle Scholar
  2. [2]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSGoogle Scholar
  3. [3]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSzbMATHGoogle Scholar
  4. [4]
    S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Precision Probes of QCD at High Energies, JHEP 07 (2017) 097 [arXiv:1706.03068] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].Google Scholar
  7. [7]
    S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Catching a New Force by the Tail, Phys. Rev. Lett. 120 (2018) 101801 [arXiv:1712.02347] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Alioli, W. Dekens, M. Girard and E. Mereghetti, NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG, JHEP 08 (2018) 205 [arXiv:1804.07407] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
  11. [11]
    N. Castro, J. Erdmann, C. Grunwald, K. Kröninger and N.-A. Rosien, EFTfitterA tool for interpreting measurements in the context of effective field theories, Eur. Phys. J. C 76 (2016) 432 [arXiv:1605.05585] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].ADSzbMATHGoogle Scholar
  13. [13]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Buckley et al., Results from TopFitter, PoS(CKM2016)127 (2016) [arXiv:1612.02294] [INSPIRE].
  16. [16]
    A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].
  17. [17]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Biekötter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, arXiv:1812.07587 [INSPIRE].
  19. [19]
    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].ADSGoogle Scholar
  20. [20]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Rojo et al., The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II, J. Phys. G 42 (2015) 103103 [arXiv:1507.00556] [INSPIRE].ADSGoogle Scholar
  26. [26]
    NNPDF collaboration, Unbiased determination of the proton structure function F 2p with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].
  27. [27]
    NNPDF collaboration, Neural network determination of parton distributions: The Nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].
  28. [28]
    NNPDF collaboration, A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
  29. [29]
    NNPDF collaboration, Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].
  30. [30]
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].ADSzbMATHGoogle Scholar
  31. [31]
    R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSGoogle Scholar
  33. [33]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  34. [34]
    NNPDF collaboration, A Determination of the Charm Content of the Proton, Eur. Phys. J. C 76 (2016) 647 [arXiv:1605.06515] [INSPIRE].
  35. [35]
    NNPDF collaboration, A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B 887 (2014) 276 [arXiv:1406.5539] [INSPIRE].
  36. [36]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  37. [37]
    NNPDF collaboration, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].
  38. [38]
    NNPDF collaboration, Charged hadron fragmentation functions from collider data, Eur. Phys. J. C 78 (2018) 651 [arXiv:1807.03310] [INSPIRE].
  39. [39]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation, JHEP 10 (2018) 005 [arXiv:1804.07773] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, arXiv:1809.09624 [INSPIRE].
  43. [43]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].
  45. [45]
    J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \) signature, JHEP 11 (2018) 131 [arXiv:1807.02130] [INSPIRE].
  46. [46]
    G. Durieux, J. Gu, E. Vryonidou and C. Zhang, Probing top-quark couplings indirectly at Higgs factories, Chin. Phys. C 42 (2018) 123107 [arXiv:1809.03520] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    A. Kobach, Baryon Number, Lepton Number and Operator Dimension in the Standard Model, Phys. Lett. B 758 (2016) 455 [arXiv:1604.05726] [INSPIRE].ADSzbMATHGoogle Scholar
  52. [52]
    A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  55. [55]
    C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys. C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Englert and M. Russell, Top quark electroweak couplings at future lepton colliders, Eur. Phys. J. C 77 (2017) 535 [arXiv:1704.01782] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].ADSGoogle Scholar
  58. [58]
    P.L. Cho and E.H. Simmons, Searching for G3 in \( t\overline{t} \) production, Phys. Rev. D 51 (1995) 2360 [hep-ph/9408206] [INSPIRE].
  59. [59]
    F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev. D 95 (2017) 035024 [arXiv:1611.00767] [INSPIRE].ADSGoogle Scholar
  60. [60]
    V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou, Constraining anomalous gluon self-interactions at the LHC: a reappraisal, JHEP 07 (2018) 093 [arXiv:1806.04696] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].ADSGoogle Scholar
  62. [62]
    C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
  63. [63]
    I. Brivio and M. Trott, Scheming in the SMEFT… and a reparameterization invariance!, JHEP 07 (2017) 148 [Addendum ibid. 05 (2018) 136] [arXiv:1701.06424] [INSPIRE].
  64. [64]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Bramante, A. Delgado, L. Lehman and A. Martin, Boosted Higgses from chromomagnetic bs: \( b\overline{b}h \) at high luminosity, Phys. Rev. D 93 (2016) 053001 [arXiv:1410.3484] [INSPIRE].
  66. [66]
    C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSGoogle Scholar
  67. [67]
    C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].ADSGoogle Scholar
  68. [68]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  69. [69]
    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].ADSGoogle Scholar
  70. [70]
    G. Durieux, M. Perelló, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP 10 (2018) 168 [arXiv:1807.02121] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSGoogle Scholar
  72. [72]
    F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. C 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].ADSGoogle Scholar
  73. [73]
    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].ADSGoogle Scholar
  74. [74]
    F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].ADSGoogle Scholar
  75. [75]
    K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, JHEP 08 (2016) 039 [arXiv:1512.02572] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Fichet, A. Tonero and P. Rebello Teles, Sharpening the shape analysis for higher-dimensional operator searches, Phys. Rev. D 96 (2017) 036003 [arXiv:1611.01165] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar
  79. [79]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSzbMATHGoogle Scholar
  80. [80]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSGoogle Scholar
  81. [81]
    N. Deutschmann, C. Duhr, F. Maltoni and E. Vryonidou, Gluon-fusion Higgs production in the Standard Model Effective Field Theory, JHEP 12 (2017) 063 [Erratum ibid. 02 (2018) 159] [arXiv:1708.00460] [INSPIRE].
  82. [82]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].ADSGoogle Scholar
  85. [85]
    M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].ADSGoogle Scholar
  86. [86]
    A. Greljo and D. Marzocca, High-p T dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].ADSGoogle Scholar
  88. [88]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSGoogle Scholar
  89. [89]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar
  91. [91]
    A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar
  93. [93]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].
  94. [94]
    CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].
  95. [95]
    CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV and impact on parton distribution functions, Eur. Phys. J. C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
  96. [96]
    ATLAS collaboration, Measurement of the W boson polarisation in \( t\overline{t} \) events from pp collisions at \( \sqrt{s} \) = 8 TeV in the lepton + jets channel with ATLAS, Eur. Phys. J. C 77 (2017) 264 [Erratum ibid. C 79 (2019) 19] [arXiv:1612.02577] [INSPIRE].
  97. [97]
    CMS collaboration, Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at \( \sqrt{s} \) = 8TeV, Phys. Lett. B 762 (2016) 512 [arXiv:1605.09047] [INSPIRE].
  98. [98]
    CMS collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Rev. D 95 (2017) 092001 [arXiv:1610.04191] [INSPIRE].
  99. [99]
    ATLAS collaboration, Determination of the parton distribution functions of the proton from ATLAS measurements of differential W and Z/γ * and \( t\overline{t} \) cross sections, ATL-PHYS-PUB-2018-017.
  100. [100]
    CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].
  101. [101]
    CMS collaboration, Measurement of normalized differential \( \mathrm{t}\overline{\mathrm{t}} \) cross sections in the dilepton channel from pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2018) 060 [arXiv:1708.07638] [INSPIRE].
  102. [102]
    CMS collaboration, Measurements of \( t\overline{t} \) cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 776 (2018) 355 [arXiv:1705.10141] [INSPIRE].
  103. [103]
    CMS collaboration, Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 140 [arXiv:1710.10614] [INSPIRE].
  104. [104]
    CMS collaboration, Observation of top quark pairs produced in association with a vector boson in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 01 (2016) 096 [arXiv:1510.01131] [INSPIRE].
  105. [105]
    CMS collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 011 [arXiv:1711.02547] [INSPIRE].
  106. [106]
    ATLAS collaboration, Measurement of the \( t\overline{t}W \) and \( t\overline{t}Z \) production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2015) 172 [arXiv:1509.05276] [INSPIRE].
  107. [107]
    ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) production cross sections in multilepton final states using 3.2 fb −1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 40 [arXiv:1609.01599] [INSPIRE].
  108. [108]
    CMS collaboration, Observation of \( \mathrm{t}\overline{\mathrm{t}}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  109. [109]
    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
  110. [110]
    CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
  111. [111]
    CMS collaboration, Search for s channel single top quark production in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 09 (2016) 027 [arXiv:1603.02555] [INSPIRE].
  112. [112]
    ATLAS collaboration, Evidence for single top-quark production in the s-channel in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector using the Matrix Element Method, Phys. Lett. B 756 (2016) 228 [arXiv:1511.05980] [INSPIRE].
  113. [113]
    ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
  114. [114]
    ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
  115. [115]
    CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE].
  116. [116]
    CMS collaboration, Single top t-channel differential cross section at 8 TeV, CMS-PAS-TOP-14-004.
  117. [117]
    CMS collaboration, Measurement of the differential cross section for t-channel single-top-quark production at \( \sqrt{s} \) = 13 TeV, CMS-PAS-TOP-16-004.
  118. [118]
    ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP 01 (2016) 064 [arXiv:1510.03752] [INSPIRE].
  119. [119]
    CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].
  120. [120]
    ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at \( \sqrt{s} \) = 13 TeV with ATLAS, JHEP 01 (2018) 063 [arXiv:1612.07231] [INSPIRE].
  121. [121]
    CMS collaboration, Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 10 (2018) 117 [arXiv:1805.07399] [INSPIRE].
  122. [122]
    CMS collaboration, Measurement of the associated production of a single top quark and a Z boson in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 779 (2018) 358 [arXiv:1712.02825] [INSPIRE].
  123. [123]
    ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector, Phys. Lett. B 780 (2018) 557 [arXiv:1710.03659] [INSPIRE].
  124. [124]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSGoogle Scholar
  125. [125]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSGoogle Scholar
  126. [126]
    J. Gao and A.S. Papanastasiou, Top-quark pair-production and decay at high precision, Phys. Rev. D 96 (2017) 051501 [arXiv:1705.08903] [INSPIRE].ADSGoogle Scholar
  127. [127]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  128. [128]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].ADSGoogle Scholar
  129. [129]
    M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
  130. [130]
    M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo, Pinning down the large-x gluon with NNLO top-quark pair differential distributions, JHEP 04 (2017) 044 [arXiv:1611.08609] [INSPIRE].ADSGoogle Scholar
  131. [131]
    CMS collaboration, Measurements of \( \mathrm{t}\overline{\mathrm{t}} \) differential cross sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV using events containing two leptons, JHEP 02 (2019) 149 [arXiv:1811.06625] [INSPIRE].
  132. [132]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727] [INSPIRE].
  133. [133]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 292 [arXiv:1612.05220] [INSPIRE].
  134. [134]
    ATLAS collaboration, Measurements of \( t\overline{t} \) differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Rev. D 98 (2018) 012003 [arXiv:1801.02052] [INSPIRE].
  135. [135]
    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].ADSGoogle Scholar
  136. [136]
    M. Czakon et al., Resummation for (boosted) top-quark pair production at NNLO+NNLLin QCD, JHEP 05 (2018) 149 [arXiv:1803.07623] [INSPIRE].ADSGoogle Scholar
  137. [137]
    ATLAS collaboration, Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033.
  138. [138]
    CMS collaboration, Measurements of \( t\overline{t} \) spin correlations and top quark polarization using dilepton final states in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. D 93 (2016) 052007 [arXiv:1601.01107] [INSPIRE].
  139. [139]
    ATLAS collaboration, Measurements of top-quark pair spin correlations in the eμ channel at \( \sqrt{s} \) = 13 TeV using pp collisions in the ATLAS detector, ATLAS-CONF-2018-027.
  140. [140]
    ATLAS collaboration, Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2017) 086 [arXiv:1706.03046] [INSPIRE].
  141. [141]
    ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the \( t\overline{t}\gamma \) production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE].
  142. [142]
    CMS collaboration, Measurement of the semileptonic \( \mathrm{t}\overline{\mathrm{t}} \) + γ production cross section in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 10 (2017) 006 [arXiv:1706.08128] [INSPIRE].
  143. [143]
    CMS collaboration, Measurement of \( \mathrm{t}\overline{\mathrm{t}} \) production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 76 (2016) 379 [arXiv:1510.03072] [INSPIRE].
  144. [144]
    C. Englert, M. Russell and C.D. White, Effective Field Theory in the top sector: do multijets help?, Phys. Rev. D 99 (2019) 035019 [arXiv:1809.09744] [INSPIRE].ADSGoogle Scholar
  145. [145]
    ATLAS collaboration, Measurements of fiducial and differential cross-sections of \( t\overline{t} \) production with additional heavy-flavour jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-029.
  146. [146]
    ATLAS collaboration, Measurements of fiducial cross-sections for \( t\overline{t} \) production with one or two additional b-jets in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 11 [arXiv:1508.06868] [INSPIRE].
  147. [147]
    CMS collaboration, Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at \( \sqrt{s} \) = 8 TeV, JHEP 11 (2014) 154 [arXiv:1409.7339] [INSPIRE].
  148. [148]
    CMS collaboration, Search for standard model production of four top quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 772 (2017) 336 [arXiv:1702.06164] [INSPIRE].
  149. [149]
    ATLAS collaboration, Search for four-top-quark production in final states with one charged lepton and multiple jets using 3.2 fb −1 of proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-020.
  150. [150]
    ATLAS collaboration, Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 052009 [arXiv:1811.02305] [INSPIRE].
  151. [151]
    A. Giammanco, Single top quark production at the LHC, Rev. Phys. 1 (2016) 1 [arXiv:1511.06748] [INSPIRE].Google Scholar
  152. [152]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar
  153. [153]
    ATLAS collaboration, Measurement of differential cross-sections of a single top quark produced in association with a W boson at \( \sqrt{s} \) = 13 TeV with ATLAS, Eur. Phys. J. C 78 (2018) 186 [arXiv:1712.01602] [INSPIRE].
  154. [154]
    CMS collaboration, Evidence for associated production of a single top quark and W boson in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 110 (2013) 022003 [arXiv:1209.3489] [INSPIRE].
  155. [155]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSGoogle Scholar
  156. [156]
    F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro, tWH associated production at the LHC, Eur. Phys. J. C 77 (2017) 34 [arXiv:1607.05862] [INSPIRE].ADSGoogle Scholar
  157. [157]
    CMS collaboration, Observation of single top quark production in association with a Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, submitted to Phys. Rev. Lett. (2018) [arXiv:1812.05900] [INSPIRE].
  158. [158]
    R.D. Ball and A. Deshpande, The proton spin, semi-inclusive processes and measurements at a future Electron Ion Collider, in From My Vast Repertoire…: Guido Altarellis Legacy, A. Levy, S. Forte and G. Ridolfi eds., pp. 205–226 (2019) [ https://doi.org/10.1142/9789813238053_0011] [arXiv:1801.04842] [INSPIRE].
  159. [159]
    NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].
  160. [160]
    G. D’Agostini, Bayesian reasoning in data analysis: A critical introduction, World Scientific (2003) [INSPIRE].
  161. [161]
    R. Boughezal, A. Guffanti, F. Petriello and M. Ubiali, The impact of the LHC Z-boson transverse momentum data on PDF determinations, JHEP 07 (2017) 130 [arXiv:1705.00343] [INSPIRE].ADSGoogle Scholar
  162. [162]
    J. Rojo, Constraints on parton distributions and the strong coupling from LHC jet data, Int. J. Mod. Phys. A 30 (2015) 1546005 [arXiv:1410.7728] [INSPIRE].ADSMathSciNetGoogle Scholar
  163. [163]
    J.M. Campbell, J. Rojo, E. Slade and C. Williams, Direct photon production and PDF fits reloaded, Eur. Phys. J. C 78 (2018) 470 [arXiv:1802.03021] [INSPIRE].ADSGoogle Scholar
  164. [164]
    D. Kraft, A software package for sequential quadratic programming, DFVLR, Köln (1988).zbMATHGoogle Scholar
  165. [165]
    M. Farina, C. Mondino, D. Pappadopulo and J.T. Ruderman, New Physics from High Energy Tops, JHEP 01 (2019) 231 [arXiv:1811.04084] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di BolognaBolognaItaly
  5. 5.The Higgs Centre for Theoretical PhysicsUniversity of Edinburgh, JCMB, KBEdinburghScotland
  6. 6.Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon LaboratoryOxfordUnited Kingdom
  7. 7.Theoretical Physics Department, CERNGenevaSwitzerland
  8. 8.Institute of High Energy Physics, and School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations