A remarkably simple theory of 3d massive gravity

  • Marc GeillerEmail author
  • Karim Noui
Open Access
Regular Article - Theoretical Physics


We propose and study a new action for three-dimensional massive gravity. This action takes a very simple form when written in terms of connection and triad variables, but the connection can also be integrated out to obtain a triad formulation. The quadratic action for the perturbations around a Minkowski background reproduces the action of self-dual massive gravity, in agreement with the expectation that the theory propagates a massive graviton. We confirm this result at the non-linear level with a Hamiltonian analysis, and show that this new theory does indeed possess a single massive degree of freedom. The action depends on four coupling constants, and we identify the various massive and topological (or massless) limits in the space of parameters. This richness, along with the simplicity of the action, opens a very interesting new window onto massive gravity.


Classical Theories of Gravity Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. de Rham, Massive gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].
  5. [5]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
  7. [7]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].
  8. [8]
    S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev. D 74 (2006) 024015 [hep-th/0509148] [INSPIRE].
  11. [11]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Alexander and N. Yunes, Chern-Simons modified general relativity, Phys. Rept. 480 (2009) 1 [arXiv:0907.2562] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Crisostomi, K. Noui, C. Charmousis and D. Langlois, Beyond Lovelock gravity: higher derivative metric theories, Phys. Rev. D 97 (2018) 044034 [arXiv:1710.04531] [INSPIRE].
  15. [15]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Bergshoeff et al., Minimal massive 3D gravity, Class. Quant. Grav. 31 (2014) 145008 [arXiv:1404.2867] [INSPIRE].
  17. [17]
    E. Bergshoeff, W. Merbis, A.J. Routh and P.K. Townsend, The third way to 3D gravity, Int. J. Mod. Phys. D 24 (2015) 1544015 [arXiv:1506.05949] [INSPIRE].
  18. [18]
    S. Deser and R. Jackiw, ‘Selfdualityof topologically massive gauge theories, Phys. Lett. 139B (1984) 371.Google Scholar
  19. [19]
    C. Aragone and A. Khoudeir, Selfdual massive gravity, Phys. Lett. B 173 (1986) 141 [INSPIRE].
  20. [20]
    S. Deser and J.G. McCarthy, Selfdual formulations of D = 3 gravity theories, Phys. Lett. B 246 (1990) 441 [INSPIRE].
  21. [21]
    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E.A. Bergshoeff et al., Zwei-Dreibein gravity: a two-frame-field model of 3D massive gravity, Phys. Rev. Lett. 111 (2013) 111102 [Erratum ibid. 111 (2013) 259902] [arXiv:1307.2774] [INSPIRE].
  23. [23]
    S. Alexandrov and C. Deffayet, On partially massless theory in 3 dimensions, JCAP 03 (2015) 043 [arXiv:1410.2897] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    E.A. Bergshoeff et al., Chern-Simons-like gravity theories, Lect. Notes Phys. 892 (2015) 181 [arXiv:1402.1688].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    W. Merbis, Chern-Simons-like theories of gravity, Ph.D. thesis, Groningen University, Groningen, The Netherlands (2014), arXiv:1411.6888 [INSPIRE].
  26. [26]
    B. Li, T.P. Sotiriou and J.D. Barrow, f (T) gravity and local Lorentz invariance, Phys. Rev. D 83 (2011) 064035 [arXiv:1010.1041] [INSPIRE].
  27. [27]
    N. Tamanini and C.G. Boehmer, Good and bad tetrads in f (T) gravity, Phys. Rev. D 86 (2012) 044009 [arXiv:1204.4593] [INSPIRE].
  28. [28]
    D. Grumiller, P. Hacker and W. Merbis, Soft hairy warped black hole entropy, JHEP 02 (2018) 010 [arXiv:1711.07975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Geiller, Lorentz-diffeomorphism edge modes in 3d gravity, JHEP 02 (2018) 029 [arXiv:1712.05269] [INSPIRE].
  30. [30]
    M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Univ Lyon, ENS de LyonUniv Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, UMR 5672LyonFrance
  2. 2.Institut Denis Poisson, Université de Tours, Université d’Orléans, CNRS, UMR 7013ToursFrance
  3. 3.Laboratoire Astroparticule et Cosmologie, Université Paris Diderot, CNRS, UMR 7164ParisFrance

Personalised recommendations