EFT approach to the electron electric dipole moment at the two-loop level

  • Giuliano PanicoEmail author
  • Alex Pomarol
  • Marc Riembau
Open Access
Regular Article - Theoretical Physics


The ACME collaboration has recently reported a new bound on the electric dipole moment (EDM) of the electron, |de| < 1.1 × 10−29 e · cm at 90% confidence level, reaching an unprecedented accuracy level. This can translate into new relevant constraints on theories beyond the SM laying at the TeV scale, even when they contribute to the electron EDM at the two-loop level. We use the EFT approach to classify these corrections, presenting the contributions to the anomalous dimension of the CP-violating dipole operators of the electron up to the two-loop level. Selection rules based on helicity and CP play an important role to simplify this analysis. We use this result to provide new bounds on BSM with leptoquarks, extra Higgs, or constraints in sectors of the MSSM and composite Higgs models. The new ACME bound pushes natural theories significantly more into fine-tune territory, unless they have a way to accidentally preserve CP.


Beyond Standard Model CP violation Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355.Google Scholar
  2. [2]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Elias-Miró, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Boudjema, K. Hagiwara, C. Hamzaoui and K. Numata, Anomalous moments of quarks and leptons from nonstandard W W gamma couplings, Phys. Rev. D 43 (1991) 2223 [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Gripaios and D. Sutherland, Searches for CP-violating dimension-6 electroweak gauge boson operators, Phys. Rev. D 89 (2014) 076004 [arXiv:1309.7822] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B 455 (1995) 39 [hep-ph/9412375] [INSPIRE].
  12. [12]
    A. Crivellin, S. Najjari and J. Rosiek, Lepton Flavor Violation in the Standard Model with general Dimension-Six Operators, JHEP 04 (2014) 167 [arXiv:1312.0634] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The Bearable Compositeness of Leptons, JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, Scheme independence of the effective Hamiltonian for bsγ and bsg decays, Phys. Lett. B 316 (1993) 127 [hep-ph/9307364] [INSPIRE].
  15. [15]
    S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  16. [16]
    E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].ADSGoogle Scholar
  20. [20]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
  23. [23]
    N. Yamanaka, B.K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B.P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Yanase, N. Yoshinaga, K. Higashiyama and N. Yamanaka, Electric dipole moment of 199 Hg atom from P, CP-odd electron-nucleon interaction, arXiv:1805.00419 [INSPIRE].
  25. [25]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    W. Dekens, J. de Vries, M. Jung and K.K. Vos, The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069 [arXiv:1809.09114] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Fuyuto, M. Ramsey-Musolf and T. Shen, Electric Dipole Moments from CP-Violating Scalar Leptoquark Interactions, Phys. Lett. B 788 (2019) 52 [arXiv:1804.01137] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Lavoura, General formulae for f(1) → f(2)γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].
  29. [29]
    C. Biggio, M. Bordone, L. Di Luzio and G. Ridolfi, Massive vectors and loop observables: the g − 2 case, JHEP 10 (2016) 002 [arXiv:1607.07621] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the Electron EDM Constraint, arXiv:1810.07736 [INSPIRE].
  32. [32]
    Y. Kizukuri and N. Oshimo, The Neutron and electron electric dipole moments in supersymmetric theories, Phys. Rev. D 46 (1992) 3025 [INSPIRE].ADSGoogle Scholar
  33. [33]
    G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].
  34. [34]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  35. [35]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].
  36. [36]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  37. [37]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
  38. [38]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].
  39. [39]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
  41. [41]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Redi, Composite MFV and Beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, JHEP 07 (2016) 097 [arXiv:1603.06609] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  49. [49]
    G. Panico, M. Riembau and T. Vantalon, Probing light top partners with CP-violation, JHEP 06 (2018) 056 [arXiv:1712.06337] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunters Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    O. Matsedonskyi, G. Panico and A. Wulzer, Top Partners Searches and Composite Higgs Models, JHEP 04 (2016) 003 [arXiv:1512.04356] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  53. [53]
    W.B. Cairncross et al., Precision Measurement of the Electrons Electric Dipole Moment Using Trapped Molecular Ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A.C. Vutha, M. Horbatsch and E.A. Hessels, Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron, arXiv:1710.08785 [INSPIRE].
  55. [55]
    A.C. Vutha, M. Horbatsch and E.A. Hessels, Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: A scheme for measuring the electron electric dipole moment, Phys. Rev. A 98 (2018) 032513 [arXiv:1806.06774] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  2. 2.IFAE and BISTUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Departamento de FísicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Départment de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland

Personalised recommendations