Advertisement

Faint light from dark matter: classifying and constraining dark matter-photon effective operators

  • Bradley J. Kavanagh
  • Paolo PanciEmail author
  • Robert Ziegler
Open Access
Regular Article - Theoretical Physics
  • 36 Downloads

Abstract

Even if Dark Matter (DM) is neutral under electromagnetism, it can still interact with the Standard Model (SM) via photon exchange from higher-dimensional operators. Here we classify the general effective operators coupling DM to photons, distinguishing between Dirac/Majorana fermion and complex/real scalar DM. We provide model-independent constraints on these operators from direct and indirect detection. We also constrain various DM-lepton operators, which induce DM-photon interactions via RG running or which typically arise in sensible UV-completions. This provides a simple way to quickly assess constraints on any DM model that interacts mainly via photon exchange or couples to SM leptons.

Keywords

Beyond Standard Model Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  3. [3]
    J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.M. Gaskins, A review of indirect searches for particle dark matter, Contemp. Phys. 57 (2016) 496 [arXiv:1604.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Kahlhoefer, Review of LHC Dark Matter Searches, Int. J. Mod. Phys. A 32 (2017) 1730006 [arXiv:1702.02430] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. De Rujula, S.L. Glashow and U. Sarid, Charged dark matter, Nucl. Phys. B 333 (1990) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Barkana, Possible interaction between baryons and dark-matter particles revealed by the first stars, Nature 555 (2018) 71 [arXiv:1803.06698] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.B. Muñoz and A. Loeb, A small amount of mini-charged dark matter could cool the baryons in the early Universe, Nature 557 (2018) 684 [arXiv:1802.10094] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Fraser et al., The EDGES 21 cm Anomaly and Properties of Dark Matter, Phys. Lett. B 785 (2018) 159 [arXiv:1803.03245] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Berlin, D. Hooper, G. Krnjaic and S.D. McDermott, Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly, Phys. Rev. Lett. 121 (2018) 011102 [arXiv:1803.02804] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Holdom, Searching for ϵ Charges and a New U(1), Phys. Lett. B 178 (1986) 65 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.A. Abel and B.W. Schofield, Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [INSPIRE].
  16. [16]
    E. Del Nobile, M. Nardecchia and P. Panci, Millicharge or Decay: A Critical Take on Minimal Dark Matter, JCAP 04 (2016) 048 [arXiv:1512.05353] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  18. [18]
    S.D. McDermott, H.-B. Yu and K.M. Zurek, Turning off the Lights: How Dark is Dark Matter?, Phys. Rev. D 83 (2011) 063509 [arXiv:1011.2907] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Pospelov and T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs, Phys. Lett. B 480 (2000) 181 [hep-ph/0003010] [INSPIRE].
  20. [20]
    K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].
  21. [21]
    V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: Dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Banks, J.-F. Fortin and S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole Moments, arXiv:1007.5515 [INSPIRE].
  23. [23]
    E. Del Nobile, Direct detection signals of dark matter with magnetic dipole moment, PoS(EPS-HEP2017)626 [arXiv:1709.08700] [INSPIRE].
  24. [24]
    C.M. Ho and R.J. Scherrer, Anapole Dark Matter, Phys. Lett. B 722 (2013) 341 [arXiv:1211.0503] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Y. Gao, C.M. Ho and R.J. Scherrer, Anapole Dark Matter at the LHC, Phys. Rev. D 89 (2014) 045006 [arXiv:1311.5630] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Direct detection of Light Anapole and Magnetic Dipole DM, JCAP 06 (2014) 002 [arXiv:1401.4508] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    A. Alves, A.C.O. Santos and K. Sinha, Collider Detection of Dark Matter Electromagnetic Anapole Moments, Phys. Rev. D 97 (2018) 055023 [arXiv:1710.11290] [INSPIRE].ADSGoogle Scholar
  28. [28]
    N. Weiner and I. Yavin, How Dark Are Majorana WIMPs? Signals from MiDM and Rayleigh Dark Matter, Phys. Rev. D 86 (2012) 075021 [arXiv:1206.2910] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Weiner and I. Yavin, UV completions of magnetic inelastic and Rayleigh dark matter for the Fermi Line(s), Phys. Rev. D 87 (2013) 023523 [arXiv:1209.1093] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch and K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from gamma-ray lines, JCAP 10 (2012) 033 [arXiv:1207.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D.C. Latimer, Two-photon interactions with Majorana fermions, Phys. Rev. D 94 (2016) 093010 [arXiv:1706.05071] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Y. Bai and J. Berger, Lepton Portal Dark Matter, JHEP 08 (2014) 153 [arXiv:1402.6696] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. D’Eramo and M. Procura, Connecting Dark Matter UV Complete Models to Direct Detection Rates via Effective Field Theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    A. Crivellin, F. D’Eramo and M. Procura, New Constraints on Dark Matter Effective Theories from Standard Model Loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Hisano, R. Nagai and N. Nagata, Effective Theories for Dark Matter Nucleon Scattering, JHEP 05 (2015) 037 [arXiv:1502.02244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    B.J. Kavanagh, F. D’Eramo and P. Panci, runDM v1.0, Computer Software (2016).Google Scholar
  38. [38]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  40. [40]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  41. [41]
    LZ collaboration, LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
  42. [42]
    B.J. Mount et al., LUX-ZEPLIN (LZ) Technical Design Report, arXiv:1703.09144 [INSPIRE].
  43. [43]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  44. [44]
    EDELWEISS collaboration, Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach, Eur. Phys. J. C 76 (2016) 548 [arXiv:1607.03367] [INSPIRE].
  45. [45]
    SuperCDMS collaboration, Low-mass dark matter search with CDMSlite, Phys. Rev. D 97 (2018) 022002 [arXiv:1707.01632] [INSPIRE].
  46. [46]
    CRESST collaboration, First results on low-mass dark matter from the CRESST-III experiment, in 15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017), Sudbury Canada (2017) [arXiv:1711.07692] [INSPIRE].
  47. [47]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B.J. Kavanagh, R. Catena and C. Kouvaris, Signatures of Earth-scattering in the direct detection of Dark Matter, JCAP 01 (2017) 012 [arXiv:1611.05453] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  50. [50]
    V. Lefranc, E. Moulin, P. Panci, F. Sala and J. Silk, Dark Matter in γ lines: Galactic Center vs dwarf galaxies, JCAP 09 (2016) 043 [arXiv:1608.00786] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H.E.S.S. collaboration, Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].
  52. [52]
    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  53. [53]
    F. D’Eramo, B.J. Kavanagh and P. Panci, Probing Leptophilic Dark Sectors with Hadronic Processes, Phys. Lett. B 771 (2017) 339 [arXiv:1702.00016] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Fermi-LAT collaboration, Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].
  55. [55]
    M. Cirelli and P. Panci, Inverse Compton constraints on the Dark Matter e + e excesses, Nucl. Phys. B 821 (2009) 399 [arXiv:0904.3830] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Cirelli, P. Panci and P.D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl. Phys. B 840 (2010) 284 [arXiv:0912.0663] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    S. Fichet, Shining Light on Polarizable Dark Particles, JHEP 04 (2017) 088 [arXiv:1609.01762] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavor Group collaborations, A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].
  61. [61]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  62. [62]
    E. Del Nobile, C. Kouvaris, P. Panci, F. Sannino and J. Virkajarvi, Light Magnetic Dark Matter in Direct Detection Searches, JCAP 08 (2012) 010 [arXiv:1203.6652] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].
  64. [64]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  65. [65]
    F. D’Eramo, N. Fernandez and S. Profumo, When the Universe Expands Too Fast: Relentless Dark Matter, JCAP 05 (2017) 012 [arXiv:1703.04793] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    S. Hamdan and J. Unwin, Dark Matter Freeze-out During Matter Domination, Mod. Phys. Lett. A 33 (2018) 1850181 [arXiv:1710.03758] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].ADSGoogle Scholar
  68. [68]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  72. [72]
    F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar Dark Matter Models with Significant Internal Bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M.J. Baker and A. Thamm, Leptonic WIMP Coannihilation and the Current Dark Matter Search Strategy, JHEP 10 (2018) 187 [arXiv:1806.07896] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Pierce and Z. Zhang, Hidden Dipole Dark Matter, Phys. Rev. D 90 (2014) 015026 [arXiv:1405.1937] [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Herrero-Garcia, E. Molinaro and M.A. Schmidt, Dark matter direct detection of a fermionic singlet at one loop, Eur. Phys. J. C 78 (2018) 471 [arXiv:1803.05660] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  79. [79]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20/fb of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  80. [80]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  81. [81]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 10 (2014) 096 [arXiv:1407.0350] [INSPIRE].
  83. [83]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  84. [84]
    CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].
  85. [85]
    CMS collaboration, Search for pair production of tau sleptons in \( \sqrt{s} \) = 13 TeV pp collisions in the all-hadronic final state, CMS-PAS-SUS-17-003 (2018).
  86. [86]
    CMS collaboration, Search for supersymmetry in events with a τ lepton pair and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 151 [arXiv:1807.02048] [INSPIRE].
  87. [87]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  88. [88]
    L. Calibbi, R. Ziegler and J. Zupan, Minimal models for dark matter and the muon g-2 anomaly, JHEP 07 (2018) 046 [arXiv:1804.00009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    N. Kumar and S.P. Martin, Vectorlike Leptons at the Large Hadron Collider, Phys. Rev. D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].ADSGoogle Scholar
  90. [90]
    D.L. LEPSUSYWG, ALEPH and O. collaboration, Combined lep chargino results, up to 208 gev for low dm, http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html.
  91. [91]
    F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Bremsstrahlung and Gamma Ray Lines in 3 Scenarios of Dark Matter Annihilation, JCAP 08 (2014) 046 [arXiv:1405.6921] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    B.A. Dobrescu and I. Mocioiu, Spin-dependent macroscopic forces from new particle exchange, JHEP 11 (2006) 005 [hep-ph/0605342] [INSPIRE].
  93. [93]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model Independent Direct Detection Analyses, arXiv:1211.2818 [INSPIRE].
  97. [97]
    P. Panci, New Directions in Direct Dark Matter Searches, Adv. High Energy Phys. 2014 (2014) 681312 [arXiv:1402.1507] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    J.B. Dent, L.M. Krauss, J.L. Newstead and S. Sabharwal, General analysis of direct dark matter detection: From microphysics to observational signatures, Phys. Rev. D 92 (2015) 063515 [arXiv:1505.03117] [INSPIRE].ADSGoogle Scholar
  99. [99]
    E. Del Nobile, Complete Lorentz-to-Galileo dictionary for direct dark matter detection, Phys. Rev. D 98 (2018) 123003 [arXiv:1806.01291] [INSPIRE].ADSGoogle Scholar
  100. [100]
    R. Catena and B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 04 (2015) 042 [arXiv:1501.03729] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. Menendez, D. Gazit and A. Schwenk, Spin-dependent WIMP scattering off nuclei, Phys. Rev. D 86 (2012) 103511 [arXiv:1208.1094] [INSPIRE].ADSGoogle Scholar
  102. [102]
    D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912 [INSPIRE].
  103. [103]
    M.I. Gresham and K.M. Zurek, Effect of nuclear response functions in dark matter direct detection, Phys. Rev. D 89 (2014) 123521 [arXiv:1401.3739] [INSPIRE].ADSGoogle Scholar
  104. [104]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, From quarks to nucleons in dark matter direct detection, JHEP 11 (2017) 059 [arXiv:1707.06998] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  105. [105]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV Portal: LHC Phenomenology and Dark Matter Candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  106. [106]
    G. Ovanesyan and L. Vecchi, Direct detection of dark matter polarizability, JHEP 07 (2015) 128 [arXiv:1410.0601] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  108. [108]
    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  109. [109]
    B.J. Kavanagh, Xenon1T-2018 v1.0, Computer Software, available at https://github.com/bradkav/Xenon1T-2018, (2018).
  110. [110]
    The GAMBIT Dark Matter Workgroup collaboration, DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].
  111. [111]
    A. Fowlie, Non-parametric uncertainties in the dark matter velocity distribution, JCAP 01 (2019) 006 [arXiv:1809.02323] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
  113. [113]
    The GAMBIT Dark Matter Workgroup collaboration, DDcalc v2.0, Software, http://ddcalc.hepforge.org/.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Bradley J. Kavanagh
    • 1
  • Paolo Panci
    • 2
    • 3
    Email author
  • Robert Ziegler
    • 2
  1. 1.GRAPPA, Institute of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Theory Division, CERNGeneva 23Switzerland
  3. 3.Laboratori Nazionali del Gran Sasso (INFN-LNGS)AssergiItaly

Personalised recommendations