Advertisement

Time evolution of complexity: a critique of three methods

  • Tibra Ali
  • Arpan Bhattacharyya
  • S. Shajidul HaqueEmail author
  • Eugene H. Kim
  • Nathan Moynihan
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

In this work, we propose a testing procedure to distinguish between the different approaches for computing complexity. Our test does not require a direct comparison between the approaches and thus avoids the issue of choice of gates, basis, etc. The proposed testing procedure employs the information-theoretic measures Loschmidt echo and Fidelity; the idea is to investigate the sensitivity of the complexity (derived from the different approaches) to the evolution of states. We discover that only circuit complexity obtained directly from the wave function is sensitive to time evolution, leaving us to claim that it surpasses the other approaches. We also demonstrate that circuit complexity displays a universal behaviour — the complexity is proportional to the number of distinct Hamiltonian evolutions that act on a reference state. Due to this fact, for a given number of Hamiltonians, we can always find the combination of states that provides the maximum complexity; consequently, other combinations involving a smaller number of evolutions will have less than maximum complexity and, hence, will have resources. Finally, we explore the evolution of complexity in non-local theories; we demonstrate the growth of complexity is sustained over a longer period of time as compared to a local theory.

Keywords

Effective Field Theories Lattice Quantum Field Theory AdS-CFT Correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  4. [4]
    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys. 931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].
  5. [5]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
  10. [10]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP 01 (2016) 084 [arXiv:1509.09291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    W. Chemissany and T.J. Osborne, Holographic fluctuations and the principle of minimal complexity, JHEP 12 (2016) 055 [arXiv:1605.07768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev. D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP 01 (2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Rath, Holographic Complexity, Perimeter Scholars International essay (unpublished), (2016).Google Scholar
  23. [23]
    A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    Y. Zhao, Complexity and Boost Symmetry, Phys. Rev. D 98 (2018) 086011 [arXiv:1702.03957] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Flory, A complexity/fidelity susceptibility g-theorem for AdS 3 /BCFT 2, JHEP 06 (2017) 131 [arXiv:1702.06386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Alishahiha and A. Faraji Astaneh, Holographic Fidelity Susceptibility, Phys. Rev. D 96 (2017) 086004 [arXiv:1705.01834] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A. Reynolds and S.F. Ross, Complexity in de Sitter Space, Class. Quant. Grav. 34 (2017) 175013 [arXiv:1706.03788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J. Couch, S. Eccles, W. Fischler and M.-L. Xiao, Holographic complexity and noncommutative gauge theory, JHEP 03 (2018) 108 [arXiv:1710.07833] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Abt et al., Topological Complexity in AdS 3 /CFT 2, Fortsch. Phys. 66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Moosa, Evolution of Complexity Following a Global Quench, JHEP 03 (2018) 031 [arXiv:1711.02668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    B. Swingle and Y. Wang, Holographic Complexity of Einstein-Maxwell-Dilaton Gravity, JHEP 09 (2018) 106 [arXiv:1712.09826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.P. Reynolds and S.F. Ross, Complexity of the AdS Soliton, Class. Quant. Grav. 35 (2018) 095006 [arXiv:1712.03732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal, JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev. D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. Bolognesi, E. Rabinovici and S.R. Roy, On Some Universal Features of the Holographic Quantum Complexity of Bulk Singularities, JHEP 06 (2018) 016 [arXiv:1802.02045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang, Holographic subregion complexity under a thermal quench, JHEP 07 (2018) 034 [arXiv:1803.06680] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
  42. [42]
    C.A. Agón, M. Headrick and B. Swingle, Subsystem Complexity and Holography, JHEP 02 (2019) 145 [arXiv:1804.01561] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe, Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019) 012 [arXiv:1805.10298] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    K. Hashimoto, N. Iizuka and S. Sugishita, Thoughts on Holographic Complexity and its Basis-dependence, Phys. Rev. D 98 (2018) 046002 [arXiv:1805.04226] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].
  46. [46]
    M. Flory and N. Miekley, Complexity change under conformal transformations in AdS 3 /CFT 2, arXiv:1806.08376 [INSPIRE].
  47. [47]
    J. Couch, S. Eccles, T. Jacobson and P. Nguyen, Holographic Complexity and Volume, JHEP 11 (2018) 044 [arXiv:1807.02186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas, Holographic complexity of anisotropic black branes, arXiv:1808.00067 [INSPIRE].
  49. [49]
    S. Mahapatra and P. Roy, On the time dependence of holographic complexity in a dynamical Einstein-dilaton model, JHEP 11 (2018) 138 [arXiv:1808.09917] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Ghodrati, Complexity growth rate during phase transitions, Phys. Rev. D 98 (2018) 106011 [arXiv:1808.08164] [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y. Ling, Y. Liu and C.-Y. Zhang, Holographic Subregion Complexity in Einstein-Born-Infeld theory, Eur. Phys. J. C 79 (2019) 194 [arXiv:1808.10169] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar, Subregion Action and Complexity, arXiv:1809.06031 [INSPIRE].
  53. [53]
    J. Jiang, Action growth rate for a higher curvature gravitational theory, Phys. Rev. D 98 (2018) 086018 [arXiv:1810.00758] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge theories, Phys. Rev. D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Principles and symmetries of complexity in quantum field theory, Eur. Phys. J. C 79 (2019) 109 [arXiv:1803.01797] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    D.W.F. Alves and G. Camilo, Evolution of complexity following a quantum quench in free field theory, JHEP 06 (2018) 029 [arXiv:1804.00107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    J.M. Magán, Black holes, complexity and quantum chaos, JHEP 09 (2018) 043 [arXiv:1805.05839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    P. Caputa and J.M. Magán, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE].
  64. [64]
    H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complexity as a novel probe of quantum quenches: universal scalings and purifications, Phys. Rev. Lett. 122 (2019) 081601 [arXiv:1807.07075] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent States, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, More on complexity of operators in quantum field theory, JHEP 03 (2019) 161 [arXiv:1809.06678] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    J. Jiang, J. Shan and J. Yang, Circuit complexity for free Fermion with a mass quench, arXiv:1810.00537 [INSPIRE].
  69. [69]
    T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Post-Quench Evolution of Distance and Uncertainty in a Topological System: Complexity, Entanglement and Revivals, arXiv:1811.05985 [INSPIRE].
  70. [70]
    C. Bennett, Logical reversibility of computation, IBM J. Res. Dev. 17 (1973) 525.MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory, proceedings of 7th IEEE Conference on Structure in Complexity Theory, (1992).Google Scholar
  72. [72]
    E. Bernstein and U. Vazirani, Quantum complexity theory, proceedings of ACM Symposium on Theory of Computing, (1993).Google Scholar
  73. [73]
    S. Lloyd, Ultimate physical Limits to computation, Nature 406 (2000) 1047 [quant-ph/9908043].
  74. [74]
    S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, (2009).Google Scholar
  75. [75]
    C. Moore and S. Mertens, The Nature of Computation, Oxford University Press, (2011).Google Scholar
  76. [76]
    S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE].
  77. [77]
    J. Watrous, Quantum computational complexity, in Encyclopedia of complexity and systems science, Springer, (2009), pp. 7174–7201.Google Scholar
  78. [78]
    T.J. Osborne, Hamiltonian complexity, Rept. Prog. Phys. 75 (2012) 022001.ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    S. Gharibian et al., Quantum hamiltonian complexity, Foundations and Trends in Theoretical Computer Science 10 (2015) 159.MathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    R. Raz and A. Tal, Oracle Separation of BQP and PH, Electronic Colloquium on Computational Complexity, Report No. 107 (2018).Google Scholar
  81. [81]
    S. Aaronson, BQP and the polynomial hierarchy, in Proceedings of the 42nd ACM symposium on Theory of computingSTOC10 STOC 2010: 141–150.Google Scholar
  82. [82]
    S. Aaronson and A. Ambainis, Forrelation: A Problem that Optimally Separates Quantum from Classical Computing, in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of ComputingSTOC15 STOC 2015: 307–316.Google Scholar
  83. [83]
    C.H. Bennett and J. Gill, Relative to a Random Oracle A, P ANP Aco-NP A with Probability 1, SIAM J. Comput. 10 (1981) 96.MathSciNetCrossRefGoogle Scholar
  84. [84]
    S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories, Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, arXiv:1112.4833 [INSPIRE].
  86. [86]
    S.P. Jordan, H. Krovi, K.S.M. Lee and J. Preskill, BQP-completeness of Scattering in Scalar Quantum Field Theory, arXiv:1703.00454 [INSPIRE].
  87. [87]
    M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.
  88. [88]
    M.A. Nielsen, M.R. Dowling, M. Gu and A.M. Doherty, Quantum Computation as Geometry, Science 311 (2006) 1133 [quant-ph/0603161].
  89. [89]
    M.A. Nielsen and M.R. Dowling, The geometry of quantum computation, quant-ph/0701004.
  90. [90]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett. 120 (2018) 031601 [arXiv:1706.00965] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    J. Molina-Vilaplana and A. Del Campo, Complexity Functionals and Complexity Growth Limits in Continuous MERA Circuits, JHEP 08 (2018) 012 [arXiv:1803.02356] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi, Path-Integral Complexity for Perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP 12 (2018) 048 [arXiv:1808.09072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    T. Gorin, T. Prosen, T.H. Seligman and M. Znidaric, Dynamics of Loschmidt echoes and fidelity decay, Phys. Rept. 435 (2006) 33.ADSCrossRefGoogle Scholar
  97. [97]
    A. Goussev, R.A. Jalabert, H.M. Pastawski and D. Wisniacki, Loschmidt Echo, Scholarpedia 7 (2012) 11687 [arXiv:1206.6348].CrossRefGoogle Scholar
  98. [98]
    W.P. Su, J.R. Schrieffer and A.J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42 (1979) 1698 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    C.L. Kane and T.C. Lubensky, Topological boundary modes in isostatic lattices, Nature Phys. 10 (2014) 39.ADSCrossRefGoogle Scholar
  100. [100]
    A.M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, Heidelberg, Germany, (1986).CrossRefzbMATHGoogle Scholar
  101. [101]
    I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, (2006).Google Scholar
  102. [102]
    F.M. Cucchietti, The Loschmidt echo in classically chaotic systems: Quantum chaos, irreversibility and decoherence, Ph.D. Thesis, quant-ph/0410121.
  103. [103]
    D. Petz, An Invitation to the Algebra of Canonical Commutation Relations, Leuven University Press, Leuven, Belgium, (1990).zbMATHGoogle Scholar
  104. [104]
    B. Swingle and N. Yunger Halpern, Resilience of scrambling measurements, Phys. Rev. A 97 (2018) 062113 [arXiv:1802.01587] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    B. Swingle, G. Bentsen, M. Schleier-Smith and P. Hayden, Measuring the scrambling of quantum information, Phys. Rev. A 94 (2016) 040302 [arXiv:1602.06271] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    N. Shiba and T. Takayanagi, Volume Law for the Entanglement Entropy in Non-local QFTs, JHEP 02 (2014) 033 [arXiv:1311.1643] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    T. Ali, A. Bhattacharyya, S.S. Haque, E. Kim and N. Moynihan, Complexity vs entanglement growth: local vs non-local theory, in progress.Google Scholar
  108. [108]
    A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, Phys. Rev. D 88 (2013) 085030 [arXiv:1302.5582] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Bhattacharyya, L. Cheng, L.-Y. Hung, S. Ning and Z. Yang, Notes on the Causal Structure in a Tensor Network, arXiv:1805.03071 [INSPIRE].
  110. [110]
    A. Milsted and G. Vidal, Tensor networks as conformal transformations, arXiv:1805.12524 [INSPIRE].
  111. [111]
    A. Milsted and G. Vidal, Tensor networks as path integral geometry, arXiv:1807.02501 [INSPIRE].
  112. [112]
    Q. Hu, A. Franco-Rubio and G. Vidal, Continuous tensor network renormalization for quantum fields, arXiv:1809.05176 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter InstituteWaterlooCanada
  2. 2.Center for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan
  3. 3.Department of PhysicsUniversity of WindsorWindsorCanada
  4. 4.The Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations