Advertisement

Quantum Lyapunov spectrum

  • Hrant Gharibyan
  • Masanori Hanada
  • Brian Swingle
  • Masaki TezukaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce a simple quantum generalization of the spectrum of classical Lyapunov exponents. We apply it to the SYK and XXZ models, and study the Lyapunov growth and entropy production. Our numerical results suggest that a black hole is not just the fastest scrambler, but also the fastest entropy generator. We also study the statistical features of the quantum Lyapunov spectrum and find universal random matrix behavior, which resembles the recently-found universality in classical chaos. The random matrix behavior is lost when the system is deformed away from chaos, towards integrability or a many-body localized phase. We propose that quantum systems holographically dual to gravity satisfy this universality in a strong form. We further argue that the quantum Lyapunov spectrum contains important additional information beyond the largest Lyapunov exponent and hence provides us with a better characterization of chaos in quantum systems.

Keywords

AdS-CFT Correspondence Field Theories in Lower Dimensions Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28 (1969) 1200.ADSGoogle Scholar
  2. [2]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Kitaev, A simple model of quantum holography, Part 1 and Part 2, talks at Kavli Institute for Theoretical Physics (KITP), Santa Barbara U.S.A. (2015).Google Scholar
  6. [6]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L. Vinet and A. Zhedanov, Amissingfamily of classical orthogonal polynomials, J. Phys. A 44 (2011) 085201 [arXiv:1011.1669].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].
  11. [11]
    H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example, Phys. Rev. Lett. 80 (1997) 1373 [cond-mat/9707253].
  12. [12]
    M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].ADSCrossRefGoogle Scholar
  13. [13]
    B. Swingle, G. Bentsen, M. Schleier-Smith and P. Hayden, Measuring the scrambling of quantum information, Phys. Rev. A 94 (2016) 040302 [arXiv:1602.06271] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Zhu, M. Hafezi and T. Grover, Measurement of many-body chaos using a quantum clock, Phys. Rev. A 94 (2016) 062329 [arXiv:1607.00079] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N.Y. Yao et al., Interferometric Approach to Probing Fast Scrambling, arXiv:1607.01801 [INSPIRE].
  16. [16]
    N. Yunger Halpern, Jarzynski-like equality for the out-of-time-ordered correlator, Phys. Rev. A 95 (2017) 012120 [arXiv:1609.00015] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Yunger Halpern, B. Swingle and J. Dressel, Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A 97 (2018) 042105 [arXiv:1704.01971] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Campisi and J. Goold, Thermodynamics of quantum information scrambling, Phys. Rev. E 95 (2017) 062127 [arXiv:1609.05848] [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
  20. [20]
    M. Gärttner, J.G. Bohnet, A. Safavi-Naini, M.L. Wall, J.J. Bollinger and A.M. Rey, Measuring out-of-time-order correlations and multiple quantum spectra in a trapped ion quantum magnet, Nature Phys. 13 (2017) 781 [arXiv:1608.08938] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.X. Wei, C. Ramanathan and P. Cappellaro, Exploring localization in nuclear spin chains, Phys. Rev. Lett. 120 (2018) 070501 [arXiv:1612.05249].ADSCrossRefGoogle Scholar
  22. [22]
    J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai et al., Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator, Phys. Rev. X 7 (2017) 031011 [arXiv:1609.01246] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    E.J. Meier, J. Ang’ong’a, F.A. An and B. Gadway, Exploring quantum signatures of chaos on a Floquet synthetic lattice, arXiv:1705.06714.
  24. [24]
    A. Nahum, S. Vijay and J. Haah, Operator Spreading in Random Unitary Circuits, Phys. Rev. X 8 (2018) 021014 [arXiv:1705.08975] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    C. von Keyserlingk, T. Rakovszky, F. Pollmann and S. Sondhi, Operator hydrodynamics, OTOCs and entanglement growth in systems without conservation laws, Phys. Rev. X 8 (2018) 021013 [arXiv:1705.08910] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    S. Xu and B. Swingle, Accessing scrambling using matrix product operators, arXiv:1802.00801 [INSPIRE].
  27. [27]
    D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018) 122 [arXiv:1802.02633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Jonay, D.A. Huse and A. Nahum, Coarse-grained dynamics of operator and state entanglement, arXiv:1803.00089 [INSPIRE].
  29. [29]
    M. Mezei, Membrane theory of entanglement dynamics from holography, Phys. Rev. D 98 (2018) 106025 [arXiv:1803.10244] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y.-Z. You and Y. Gu, Entanglement Features of Random Hamiltonian Dynamics, Phys. Rev. B 98 (2018) 014309 [arXiv:1803.10425] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    X. Chen and T. Zhou, Operator scrambling and quantum chaos, arXiv:1804.08655 [INSPIRE].
  32. [32]
    S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030].
  33. [33]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D.J. Luitz and Y. Bar Lev, Information propagation in isolated quantum systems, Phys. Rev. B 96 (2017) 020406 [arXiv:1702.03929] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Bohrdt, C.B. Mendl, M. Endres and M. Knap, Scrambling and thermalization in a diffusive quantum many-body system, New J. Phys. 19 (2017) 063001 [arXiv:1612.02434] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Heyl, F. Pollmann and B. Dóra, Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators, Phys. Rev. Lett. 121 (2018) 016801 [arXiv:1801.01684] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.-J. Lin and O.I. Motrunich, Out-of-time-ordered correlators in a quantum Ising chain, Phys. Rev. B 97 (2018) 144304 [arXiv:1801.01636] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Nahum, J. Ruhman, S. Vijay and J. Haah, Quantum Entanglement Growth Under Random Unitary Dynamics, Phys. Rev. X 7 (2017) 031016 [arXiv:1608.06950] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    T. Rakovszky, F. Pollmann and C.W. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Phys. Rev. X 8 (2018) 031058 [arXiv:1710.09827] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    V. Khemani, A. Vishwanath and D.A. Huse, Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws, Phys. Rev. X 8 (2018) 031057 [arXiv:1710.09835] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    V. Khemani, D.A. Huse and A. Nahum, Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical and classical chaos, Phys. Rev. B 98 (2018) 144304 [arXiv:1803.05902] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    I.L. Aleiner, L. Faoro and L.B. Ioffe, Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves, Annals Phys. 375 (2016) 378 [arXiv:1609.01251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Grozdanov, K. Schalm and V. Scopelliti, Kinetic theory for classical and quantum many-body chaos, Phys. Rev. E 99 (2019) 012206 [arXiv:1804.09182] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A.A. Patel, D. Chowdhury, S. Sachdev and B. Swingle, Quantum butterfly effect in weakly interacting diffusive metals, Phys. Rev. X 7 (2017) 031047 [arXiv:1703.07353] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    B. Swingle and N. Yunger Halpern, Resilience of scrambling measurements, Phys. Rev. A 97 (2018) 062113 [arXiv:1802.01587] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Dressel, J.R. González Alonso, M. Waegell and N. Yunger Halpern, Strengthening weak measurements of qubit out-of-time-order correlators, Phys. Rev. A 98 (2018) 012132 [arXiv:1805.00667] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Menezes and J. Marino, Slow scrambling in sonic black holes, EPL 121 (2018) 60002 [arXiv:1712.05456] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Scaffidi and E. Altman, Semiclassical Theory of Many-Body Quantum Chaos and its Bound, arXiv:1711.04768 [INSPIRE].
  52. [52]
    A. Hallam, J. Morley and A.G. Green, The lyapunov spectrum of quantum thermalisation, arXiv:1806.05204.
  53. [53]
    E.B. Rozenbaum, S. Ganeshan and V. Galitski, Universal level statistics of the out-of-time-ordered operator, arXiv:1801.10591.
  54. [54]
    E. Berkowitz, M. Hanada and J. Maltz, Chaos in Matrix Models and Black Hole Evaporation, Phys. Rev. D 94 (2016) 126009 [arXiv:1602.01473] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    M. Hanada, H. Shimada and M. Tezuka, Universality in Chaos: Lyapunov Spectrum and Random Matrix Theory, Phys. Rev. E 97 (2018) 022224 [arXiv:1702.06935] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    D.J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field heisenberg chain, Phys. Rev. B 91 (2015) 081103 [arXiv:1411.0660].ADSCrossRefGoogle Scholar
  62. [62]
    V. Latora and M. Baranger, Kolmogorov-sinai entropy rate versus physical entropy, Phys. Rev. Lett. 82 (1999) 520 [chao-dyn/9806006].
  63. [63]
    M. Falcioni, L. Palatella and A. Vulpiani, Production rate of the coarse-grained gibbs entropy and the kolmogorov-sinai entropy: A real connection?, Phys. Rev. E 71 (2005) 016118 [chao-dyn/0407056].
  64. [64]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  65. [65]
    G. Gur-Ari, M. Hanada and S.H. Shenker, Chaos in Classical D0-Brane Mechanics, JHEP 02 (2016) 091 [arXiv:1512.00019] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior in Scrambling Systems, JHEP 07 (2018) 124 [Erratum ibid. 1902 (2019) 197] [arXiv:1803.08050] [INSPIRE].
  67. [67]
    V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
  68. [68]
    A.M. García-García, B. Loureiro, A. Romero-Bermúdez and M. Tezuka, Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 120 (2018) 241603 [arXiv:1707.02197] [INSPIRE].
  69. [69]
    T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    M. Serbyn, Z. Papic and D. Abanin, A criterion for many-body localization-delocalization phase transition, Phys. Rev. X 5 (2015) 041047 [arXiv:1507.01635].CrossRefGoogle Scholar
  71. [71]
    P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    I.V. Gornyi, A.D. Mirlin and D.G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-t transport, Phys. Rev. Lett. 95 (2005) 206603 [cond-mat/0506411].
  73. [73]
    D. Basko, I. Aleiner and B. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals Phys. 321 (2006) 1126 [cond-mat/0506617].
  74. [74]
    I.L. Aleiner, B.L. Altshuler and G.V. Shlyapnikov, Finite temperature phase transition for disordered weakly interacting bosons in one dimension, Nature Phys. 6 (2010) 900.ADSCrossRefGoogle Scholar
  75. [75]
    B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    Y. Chen, Quantum Logarithmic Butterfly in Many Body Localization, arXiv:1608.02765 [INSPIRE].
  77. [77]
    R. Fan, P. Zhang, H. Shen and H. Zhai, Out-of-Time-Order Correlation for Many-Body Localization, arXiv:1608.01914 [INSPIRE].
  78. [78]
    Y. Huang, Y. Zhang and X. Chen, Out-of-time-ordered correlators in many-body localized systems, Annalen Phys. 529 (2017) 1600318 [arXiv:1608.01091] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Sahu, S. Xu and B. Swingle, Scrambling dynamics across a thermalization-localization quantum phase transition, arXiv:1807.06086 [INSPIRE].
  80. [80]
    R. Alicki, Information-theoretical meaning of quantum-dynamical entropy, Phys. Rev. A 66 (2002) 052302 [quant-ph/0201012].
  81. [81]
    R. Alicki, Quantum geometry of noncommutative Bernoulli shifts, Banach Center Publ. 43 (1998) 25.MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    R.V. Mendes, Entropy and quantum characteristic exponents. steps towards a quantum pesin theory, in Chaosthe interplay between stochastic and deterministic behaviour, Springer, Berlin Germany (1995), pg. 273.Google Scholar
  83. [83]
    V. Man’ko and R.V. Mendes, Lyapunov exponent in quantum mechanics. a phase-space approach, Physica D 145 (2000) 330 [quant-ph/0002049].
  84. [84]
    T. Kunihiro, B. Müller, A. Ohnishi and A. Schäfer, Towards a Theory of Entropy Production in the Little and Big Bang, Prog. Theor. Phys. 121 (2009) 555 [arXiv:0809.4831] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    J. Cotler, C.-M. Jian, X.-L. Qi and F. Wilczek, Superdensity Operators for Spacetime Quantum Mechanics, JHEP 09 (2018) 093 [arXiv:1711.03119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    B. Kloss, Y.B. Lev and D. Reichman, Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential, Phys. Rev. B 97 (2018) 024307 [arXiv:1710.09378].ADSCrossRefGoogle Scholar
  87. [87]
    P.V. Buividovich, M. Hanada and A. Schäfer, Quantum chaos, thermalization, and entanglement generation in real-time simulations of the banks-schler-shenker-susskind matrix model, Phys. Rev. D 99 (2019) 046011 [arXiv:1810.03378] [INSPIRE].ADSGoogle Scholar
  88. [88]
    P. Buividovich, M. Hanada and A. Schäfer, Real-time dynamics of matrix quantum mechanics beyond the classical approximation, EPJ Web Conf. 175 (2018) 08006 [arXiv:1711.05556] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Department of PhysicsUniversity of ColoradoBoulderU.S.A.
  3. 3.Condensed Matter Theory Center, Maryland Center for Fundamental Physics, Joint Center for Quantum Information and Computer Science, and Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  4. 4.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations