Matrix model and Yukawa couplings on the noncommutative torus

  • Masaki HondaEmail author
Open Access
Regular Article - Theoretical Physics


The IKKT model is proposed as a non-perturbative formulation of superstring theory. We propose a Dirac operator on the noncommutative torus, which is consistent with the IKKT model, based on noncommutative geometry. Next, we consider zero-mode equations of the Dirac operator with magnetic fluxes. We find that zero-mode solutions have the chirality and the generation structures similar to the commutative case. Moreover, we compute Yukawa couplings of chiral matter fields.


M(atrix) Theories Compactification and String Models Non-Commutative Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].
  2. [2]
    A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Intersecting branes and a standard model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H.C. Steinacker and J. Zahn, An extended standard model and its Higgs geometry from the matrix model, PTEP 2014 (2014) 083B03 [arXiv:1401.2020] [INSPIRE].
  4. [4]
    H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Aoki, J. Nishimura and Y. Susaki, Finite-matrix formulation of gauge theories on a non-commutative torus with twisted boundary conditions, JHEP 04 (2009) 055 [arXiv:0810.5234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Austing and J.F. Wheater, The Convergence of Yang-Mills integrals, JHEP 02 (2001) 028 [hep-th/0101071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Austing and J.F. Wheater, Convergent Yang-Mills matrix theories, JHEP 04 (2001) 019 [hep-th/0103159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353 [hep-th/0012145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Dixmier, Représentations irrèducibles des algèbres de Lie nilpotentes, An. Acad. Brasil Ci. 35 (1963) 491.MathSciNetzbMATHGoogle Scholar
  12. [12]
    D. Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc Am. Math. Soc. 21 (1969) 171.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M.A. Rieffel, Projective modules over higher-dimensional non-commutative tori, Can. J. Math. XL (1988) 257.Google Scholar
  14. [14]
    Y. Tenjinbayashi, H. Igarashi and T. Fujiwara, Dirac operator zero-modes on a torus, Annals Phys. 322 (2007) 460 [hep-th/0506259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. Steinacker, Emergent Gravity from Noncommutative Gauge Theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Nishimura and A. Tsuchiya, Realizing chiral fermions in the type IIB matrix model at finite N, JHEP 12 (2013) 002 [arXiv:1305.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Mumford, Tata lectures on theta I, Birkhäuser, Boston U.S.A. (1983).Google Scholar
  19. [19]
    A. Konechny and A.S. Schwarz, Compactification of M(atrix) theory on noncommutative toroidal orbifolds, Nucl. Phys. B 591 (2000) 667 [hep-th/9912185] [INSPIRE].
  20. [20]
    S. Walters, Toroidal orbifolds of3 and6 symmetries of noncommutative tori, Nucl. Phys. B 894 (2015) 496 [INSPIRE].
  21. [21]
    H. Abe, T. Kobayashi, H. Ohki, A. Oikawa and K. Sumita, Phenomenological aspects of 10D SYM theory with magnetized extra dimensions, Nucl. Phys. B 870 (2013) 30 [arXiv:1211.4317] [INSPIRE].
  22. [22]
    T. Asakawa and S. Matsuura, Spherical D-brane by Tachyon Condensation, PTEP 2018 (2018) 033B01 [arXiv:1703.10352] [INSPIRE].
  23. [23]
    T. Asakawa, G. Ishiki, T. Matsumoto, S. Matsuura and H. Muraki, Commutative Geometry for Non-commutative D-branes by Tachyon Condensation, PTEP 2018 (2018) 063B04 [arXiv:1804.00161] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan

Personalised recommendations