Advertisement

Matrix model and Yukawa couplings on the noncommutative torus

  • Masaki HondaEmail author
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

The IKKT model is proposed as a non-perturbative formulation of superstring theory. We propose a Dirac operator on the noncommutative torus, which is consistent with the IKKT model, based on noncommutative geometry. Next, we consider zero-mode equations of the Dirac operator with magnetic fluxes. We find that zero-mode solutions have the chirality and the generation structures similar to the commutative case. Moreover, we compute Yukawa couplings of chiral matter fields.

Keywords

M(atrix) Theories Compactification and String Models Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].
  2. [2]
    A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Intersecting branes and a standard model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H.C. Steinacker and J. Zahn, An extended standard model and its Higgs geometry from the matrix model, PTEP 2014 (2014) 083B03 [arXiv:1401.2020] [INSPIRE].
  4. [4]
    H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Aoki, J. Nishimura and Y. Susaki, Finite-matrix formulation of gauge theories on a non-commutative torus with twisted boundary conditions, JHEP 04 (2009) 055 [arXiv:0810.5234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Austing and J.F. Wheater, The Convergence of Yang-Mills integrals, JHEP 02 (2001) 028 [hep-th/0101071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Austing and J.F. Wheater, Convergent Yang-Mills matrix theories, JHEP 04 (2001) 019 [hep-th/0103159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353 [hep-th/0012145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Dixmier, Représentations irrèducibles des algèbres de Lie nilpotentes, An. Acad. Brasil Ci. 35 (1963) 491.MathSciNetzbMATHGoogle Scholar
  12. [12]
    D. Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc Am. Math. Soc. 21 (1969) 171.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M.A. Rieffel, Projective modules over higher-dimensional non-commutative tori, Can. J. Math. XL (1988) 257.Google Scholar
  14. [14]
    Y. Tenjinbayashi, H. Igarashi and T. Fujiwara, Dirac operator zero-modes on a torus, Annals Phys. 322 (2007) 460 [hep-th/0506259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. Steinacker, Emergent Gravity from Noncommutative Gauge Theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Nishimura and A. Tsuchiya, Realizing chiral fermions in the type IIB matrix model at finite N, JHEP 12 (2013) 002 [arXiv:1305.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Mumford, Tata lectures on theta I, Birkhäuser, Boston U.S.A. (1983).Google Scholar
  19. [19]
    A. Konechny and A.S. Schwarz, Compactification of M(atrix) theory on noncommutative toroidal orbifolds, Nucl. Phys. B 591 (2000) 667 [hep-th/9912185] [INSPIRE].
  20. [20]
    S. Walters, Toroidal orbifolds of3 and6 symmetries of noncommutative tori, Nucl. Phys. B 894 (2015) 496 [INSPIRE].
  21. [21]
    H. Abe, T. Kobayashi, H. Ohki, A. Oikawa and K. Sumita, Phenomenological aspects of 10D SYM theory with magnetized extra dimensions, Nucl. Phys. B 870 (2013) 30 [arXiv:1211.4317] [INSPIRE].
  22. [22]
    T. Asakawa and S. Matsuura, Spherical D-brane by Tachyon Condensation, PTEP 2018 (2018) 033B01 [arXiv:1703.10352] [INSPIRE].
  23. [23]
    T. Asakawa, G. Ishiki, T. Matsumoto, S. Matsuura and H. Muraki, Commutative Geometry for Non-commutative D-branes by Tachyon Condensation, PTEP 2018 (2018) 063B04 [arXiv:1804.00161] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan

Personalised recommendations