Advertisement

Precision diboson measurements at hadron colliders

  • A. Azatov
  • D. BarducciEmail author
  • E. Venturini
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

We discuss the measurements of the anomalous triple gauge couplings at Large Hadron Collider focusing on the contribution of the \( \mathcal{O} \)3W and \( {\mathcal{O}}_{3\tilde{W}} \) operators. These deviations were known to be particularly hard to measure due to their suppressed interference with the SM amplitudes in the inclusive processes, leading to approximate flat directions in the space of these Wilson coefficients. We present the prospects for the measurements of these interactions at HL-LHC and HE-LHC using exclusive variables sensitive to the interference terms and taking carefully into account effects appearing due to NLO QCD corrections.

Keywords

Beyond Standard Model Effective Field Theories CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B 423 (1994) 3 [Erratum ibid. B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
  6. [6]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Roth, F. Campanario, S. Sapeta and D. Zeppenfeld, Anomalous couplings in WZ production beyond NLO QCD, PoS(LHCP2016)141 (2016) [arXiv:1612.03577] [INSPIRE].
  10. [10]
    J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W + W production at the LHC including fermionic operators, Phys. Rev. D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Chiesa, A. Denner and J.-N. Lang, Anomalous triple-gauge-boson interactions in vector-boson pair production with RECOLA2, Eur. Phys. J. C 78 (2018) 467 [arXiv:1804.01477] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    U. Baur, T. Han and J. Ohnemus, WZ production at hadron colliders: Effects of nonstandard WWZ couplings and QCD corrections, Phys. Rev. D 51 (1995) 3381 [hep-ph/9410266] [INSPIRE].
  13. [13]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Grojean, M. Montull and M. Riembau, Diboson at the LHC vs LEP, JHEP 03 (2019) 020 [arXiv:1810.05149] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Biekötter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, arXiv:1812.07587 [INSPIRE].
  21. [21]
    D. Liu and L.-T. Wang, Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs, Phys. Rev. D 99 (2019) 055001 [arXiv:1804.08688] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Alves, N. Rosa-Agostinho, O.J.P. Éboli and M.C. Gonzalez-Garcia, Effect of Fermionic Operators on the Gauge Legacy of the LHC Run I, Phys. Rev. D 98 (2018) 013006 [arXiv:1805.11108] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. Éboli and M.C. Gonzalez-Garcia, Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data, Phys. Rev. D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  26. [26]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  29. [29]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  33. [33]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 05 (2017) 139 [arXiv:1703.09065] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Measurement of W ± Z production cross sections and gauge boson polarisation in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-034 (2018).
  35. [35]
    A. Helset and M. Trott, On interference and non-interference in the SMEFT, JHEP 04 (2018) 038 [arXiv:1711.07954] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    CMS collaboration, Measurement of the Wγ and Zγ inclusive cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89 (2014) 092005 [arXiv:1308.6832] [INSPIRE].
  37. [37]
    F. Boudjema, K. Hagiwara, C. Hamzaoui and K. Numata, Anomalous moments of quarks and leptons from nonstandard WWγ couplings, Phys. Rev. D 43 (1991) 2223 [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Gripaios and D. Sutherland, Searches for CP-violating dimension-6 electroweak gauge boson operators, Phys. Rev. D 89 (2014) 076004 [arXiv:1309.7822] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Dib et al., The Neutron electric dipole form-factor in the perturbative chiral quark model, J. Phys. G 32 (2006) 547 [hep-ph/0601144] [INSPIRE].
  40. [40]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  41. [41]
    X. Cid Vidal et al., Beyond the Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1812.07831 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.SISSA and INFN sezione di TriesteTriesteItaly

Personalised recommendations