Advertisement

Sign of CP violating phase in quarks and leptons

  • Yusuke Shimizu
  • Kenta TakagiEmail author
  • Shunya Takahashi
  • Morimitsu Tanimoto
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We discuss the relation between the CP violation of the quark mixing and that of the lepton mixing by investigating a CP violating observable, the Jarlskog invariant, as well as the CP violating Dirac phase. The down-type quark mass matrix with three zeros is given in terms of the minimal number of parameters, while the up-type quark mass matrix is diagonal. These quark mass matrices leading to the successful CKM mixing angles and CP violation are embedded in both the Pati-Salam and SU(5) models. The leptonic Jarlskog invariant J CP l (as well as CP violating Dirac phase) is examined for two cases: the neutrino mass matrix is diagonal or non-diagonal, where no additional CP violating phase is introduced apart from the Majorana phases. In the case of the diagonal neutrino mass matrix, the favorable sign of the leptonic CP violation is obtained, however, the magnitude of J CP l is at most \( \mathcal{O} \)(10−4), which is too small compared with the expected value from the observation −0.02. In the case of the non-diagonal neutrino mass matrix where the tri-bimaximal mixing pattern is taken, we obtain the successful J CP l up to its sign.

Keywords

CP violation GUT Neutrino Physics Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, The Problem of Mass, Trans. New York Acad. Sci. 38 (1977) 185 [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    R. Gatto, G. Sartori and M. Tonin, Weak Selfmasses, Cabibbo Angle and Broken SU(2) × SU(2), Phys. Lett. 28B (1968) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Fritzsch, Weak Interaction Mixing in the Six-Quark Theory, Phys. Lett. 73B (1978) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Fritzsch, Quark Masses and Flavor Mixing, Nucl. Phys. B 155 (1979) 189 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    G.C. Branco, L. Lavoura and F. Mota, Nearest Neighbor Interactions and the Physical Content of Fritzsch Mass Matrices, Phys. Rev. D 39 (1989) 3443 [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Ramond, R.G. Roberts and G.G. Ross, Stitching the Yukawa quilt, Nucl. Phys. B 406 (1993) 19 [hep-ph/9303320] [INSPIRE].
  7. [7]
    H. Fritzsch and Z.-z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B 555 (2003) 63 [hep-ph/0212195] [INSPIRE].
  8. [8]
    M. Tanimoto and T.T. Yanagida, Occams Razor in Quark Mass Matrices, PTEP 2016 (2016) 043B03 [arXiv:1601.04459] [INSPIRE].
  9. [9]
    K. Harigaya, M. Ibe and T.T. Yanagida, Seesaw Mechanism with Occams Razor, Phys. Rev. D 86 (2012) 013002 [arXiv:1205.2198] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Y. Kaneta, Y. Shimizu, M. Tanimoto and T.T. Yanagida, Occams razor in lepton mass matrices: The sign of the universes baryon asymmetry, PTEP 2016 (2016) 063B03 [arXiv:1604.03315] [INSPIRE].
  11. [11]
    Y. Shimizu and Y. Tatsuta, Edge of a cliff, JHEP 10 (2016) 040 [arXiv:1608.00200] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Tanimoto and K. Yamamoto, Linking Leptonic CP-violation to Quark Unitarity Triangle, JHEP 04 (2015) 037 [arXiv:1501.07717] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T2K collaboration, Search for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
  14. [14]
    NOvA collaboration, Constraints on Oscillation Parameters from ν e Appearance and ν μ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  15. [15]
    S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. 86B (1979) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Antusch and V. Maurer, Large neutrino mixing angle θ 13MNS and quark-lepton mass ratios in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP-violation, JHEP 11 (2011)009 [arXiv:1108.0614] [INSPIRE].
  19. [19]
    S.F. King, A to Z of Flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.H. Rahat, P. Ramond and B. Xu, Asymmetric tribimaximal texture, Phys. Rev. D 98 (2018) 055030 [arXiv:1805.10684] [INSPIRE].
  21. [21]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  22. [22]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].
  24. [24]
    Z.-z. Xing and Z.-h. Zhao, On the four-zero texture of quark mass matrices and its stability, Nucl. Phys. B 897 (2015) 302 [arXiv:1501.06346] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.I. Krastev and S.T. Petcov, Resonance Amplification and t Violation Effects in Three Neutrino Oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    NuFIT 4.0 (2018), www.nu-fit.org/.
  28. [28]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Bernabeu, G.C. Branco and M. Gronau, CP Restrictions on Quark Mass Matrices, Phys. Lett. 169B (1986) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Gronau, A. Kfir and R. Loewy, Basis Independent Tests of CP Violation in Fermion Mass Matrices, Phys. Rev. Lett. 56 (1986) 1538 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].Google Scholar
  32. [32]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].
  33. [33]
    H. Minakata and A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [INSPIRE].
  34. [34]
    A. Datta, L. Everett and P. Ramond, Cabibbo haze in lepton mixing, Phys. Lett. B 620 (2005) 42 [hep-ph/0503222] [INSPIRE].
  35. [35]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  36. [36]
    P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Yusuke Shimizu
    • 1
  • Kenta Takagi
    • 1
    Email author
  • Shunya Takahashi
    • 1
  • Morimitsu Tanimoto
    • 2
  1. 1.Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of PhysicsNiigata UniversityNiigataJapan

Personalised recommendations