Advertisement

U(N) Yang-Mills in non-commutative space time

  • Naser Ahmadiniaz
  • Olindo Corradini
  • James P. EdwardsEmail author
  • Pablo Pisani
Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

We present an approach to U(N) Yang-Mills theory in non-commutative space based upon a novel phase-space analysis of the dynamical fields with additional auxiliary variables that generate Lorentz structure and colour degrees of freedom. To illustrate this formalism we compute the quadratic terms in the effective action focusing on the planar divergences so as to extract the β-function for the Yang-Mills coupling constant. Nonetheless the method presented is general and can be applied to calculate the effective action at arbitrary order of expansion in the coupling constant and is well suited to the computation of low energy one-loop scattering amplitudes.

Keywords

Effective Field Theories Gauge Symmetry Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.M. Faruk, M. Al Alvi, W. Ahmed, M.M. Rahman and A.B. Apu, Noncommutative scalar fields in compact spaces: quantization and implications, PTEP 2017 (2017) 093B02 [arXiv:1707.01643] [INSPIRE].
  4. [4]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.Y. Alekseev, A. Recknagel and V. Schomerus, Noncommutative world volume geometries: Branes on SU(2) and fuzzy spheres, JHEP 09 (1999) 023 [hep-th/9908040] [INSPIRE].
  6. [6]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Blumenhagen, A Course on Noncommutative Geometry in String Theory, Fortsch. Phys. 62 (2014) 709 [arXiv:1403.4805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Bonezzi, O. Corradini, S.A. Franchino Vinas and P.A.G. Pisani, Worldline approach to noncommutative field theory, J. Phys. A 45 (2012) 405401 [arXiv:1204.1013] [INSPIRE].
  11. [11]
    Y. Kiem, S.-J. Rey, H.-T. Sato and J.-T. Yee, Anatomy of one loop effective action in noncommutative scalar field theories, Eur. Phys. J. C 22 (2002) 757 [hep-th/0107106] [INSPIRE].
  12. [12]
    N. Ahmadiniaz, O. Corradini, D. D’Ascanio, S. Estrada-Jiménez and P. Pisani, Noncommutative U(1) gauge theory from a worldline perspective, JHEP 11 (2015) 069 [arXiv:1507.07033] [INSPIRE].
  13. [13]
    Y.-j. Kiem, Y.-j. Kim, C. Ryou and H.-T. Sato, One loop noncommutative U(1) gauge theory from bosonic worldline approach, Nucl. Phys. B 630 (2002) 55 [hep-th/0112176] [INSPIRE].
  14. [14]
    Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett. 66 (1991) 1669 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
  16. [16]
    C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M.B. Halpern and W. Siegel, The Particle Limit of Field Theory: A New Strong Coupling Expansion, Phys. Rev. D 16 (1977) 2486 [INSPIRE].
  18. [18]
    M.B. Halpern, A. Jevicki and P. Senjanovic, Field Theories in Terms of Particle-String Variables: Spin, Internal Symmetries and Arbitrary Dimension, Phys. Rev. D 16 (1977) 2476 [INSPIRE].
  19. [19]
    H.-T. Sato and M.G. Schmidt, Worldline approach to the Bern-Kosower formalism in two loop Yang-Mills theory, Nucl. Phys. B 560 (1999) 551 [hep-th/9812229] [INSPIRE].
  20. [20]
    P. Dai, Y.-t. Huang and W. Siegel, Worldgraph Approach to Yang-Mills Amplitudes from N = 2 Spinning Particle, JHEP 10 (2008) 027 [arXiv:0807.0391] [INSPIRE].
  21. [21]
    M. Reuter, M.G. Schmidt and C. Schubert, Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals, Annals Phys. 259 (1997) 313 [hep-th/9610191] [INSPIRE].
  22. [22]
    N. Ahmadiniaz, F. Bastianelli and O. Corradini, Dressed scalar propagator in a non-Abelian background from the worldline formalism, Phys. Rev. D 93 (2016) 025035 [arXiv:1508.05144] [INSPIRE].
  23. [23]
    O. Corradini and J.P. Edwards, Mixed symmetry tensors in the worldline formalism, JHEP 05 (2016) 056 [arXiv:1603.07929] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.P. Edwards and O. Corradini, Mixed symmetry Wilson-loop interactions in the worldline formalism, JHEP 09 (2016) 081 [arXiv:1607.04230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Mansfield, The fermion content of the Standard Model from a simple world-line theory, Phys. Lett. B 743 (2015) 353 [arXiv:1410.7298] [INSPIRE].
  26. [26]
    J.P. Edwards, Unified theory in the worldline approach, Phys. Lett. B 750 (2015) 312 [arXiv:1411.6540] [INSPIRE].
  27. [27]
    J.P. Edwards and O. Corradini, Worldline colour fields and non-Abelian quantum field theory, EPJ Web Conf. 182 (2018) 02038 [arXiv:1711.09314] [INSPIRE].
  28. [28]
    T. Krajewski and R. Wulkenhaar, Perturbative quantum gauge fields on the noncommutative torus, Int. J. Mod. Phys. A 15 (2000) 1011 [hep-th/9903187] [INSPIRE].
  29. [29]
    C.P. Martin and D. Sánchez-Ruiz, The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R 4, Phys. Rev. Lett. 83 (1999) 476 [hep-th/9903077] [INSPIRE].
  30. [30]
    J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    H.J. Groenewold, On the Principles of elementary quantum mechanics, Physica 12 (1946) 405 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    L. Álvarez-Gaumé and S.R. Wadia, Gauge theory on a quantum phase space, Phys. Lett. B 501 (2001) 319 [hep-th/0006219] [INSPIRE].
  33. [33]
    A. Iskauskas, A Remark on Polar Noncommutativity, Phys. Lett. B 746 (2015) 25 [arXiv:1503.03684] [INSPIRE].
  34. [34]
    J.P. Edwards, Non-commutativity in polar coordinates, Eur. Phys. J. C 77 (2017) 320 [arXiv:1607.04491] [INSPIRE].
  35. [35]
    E. Chang-Young, D. Lee and Y. Lee, Noncommutative BTZ Black Hole in Polar Coordinates, Class. Quant. Grav. 26 (2009) 185001 [arXiv:0808.2330] [INSPIRE].
  36. [36]
    A.F. Ferrari et al., Towards a consistent noncommutative supersymmetric Yang-Mills theory: Superfield covariant analysis, Phys. Rev. D 70 (2004) 085012 [hep-th/0407040] [INSPIRE].
  37. [37]
    B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev. 162 (1967) 1195 [INSPIRE].
  38. [38]
    L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].
  39. [39]
    L.F. Abbott, M.T. Grisaru and R.K. Schaefer, The Background Field Method and the S Matrix, Nucl. Phys. B 229 (1983) 372 [INSPIRE].
  40. [40]
    N. Ahmadiniaz, C. Schubert and V.M. Villanueva, String-inspired representations of photon/gluon amplitudes, JHEP 01 (2013) 132 [arXiv:1211.1821] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Ahmadiniaz and C. Schubert, A covariant representation of the Ball-Chiu vertex, Nucl. Phys. B 869 (2013) 417 [arXiv:1210.2331] [INSPIRE].
  42. [42]
    N. Ahmadiniaz and C. Schubert, Gluon form factor decompositions from the worldline formalism, PoS(LL2016)052 (2016) [INSPIRE].
  43. [43]
    N. Ahmadiniaz and C. Schubert, QCD gluon vertices from the string-inspired formalism, Int. J. Mod. Phys. E 25 (2016) 1642004 [arXiv:1811.10780] [INSPIRE].
  44. [44]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    F. Bastianelli, O. Corradini and A. Zirotti, BRST treatment of zero modes for the worldline formalism in curved space, JHEP 01 (2004) 023 [hep-th/0312064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    O. Corradini and M. Muratori, String-inspired Methods and the Worldline Formalism in Curved Space, Eur. Phys. J. Plus 133 (2018) 457 [arXiv:1808.05401] [INSPIRE].
  47. [47]
    F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2006) [INSPIRE].
  48. [48]
    F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Particles with non abelian charges, JHEP 10 (2013) 098 [arXiv:1309.1608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    F. Bastianelli, R. Bonezzi, O. Corradini, E. Latini and K.H. Ould-Lahoucine, A worldline approach to colored particles, 2015, arXiv:1504.03617 [INSPIRE].
  50. [50]
    F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Massive and massless higher spinning particles in odd dimensions, JHEP 09 (2014) 158 [arXiv:1407.4950] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A Particle Mechanics Description of Antisymmetric Tensor Fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II., JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].
  55. [55]
    A. Barducci, R. Casalbuoni and L. Lusanna, Anticommuting Variables, Internal Degrees of Freedom and the Wilson Loop, Nucl. Phys. B 180 (1981) 141 [INSPIRE].
  56. [56]
    F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP 09 (2010) 113 [arXiv:1006.4452] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Effective action for higher spin fields on (A)dS backgrounds, JHEP 12 (2012) 113 [arXiv:1210.4649] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    R. Bonezzi, Induced Action for Conformal Higher Spins from Worldline Path Integrals, Universe 3 (2017) 64 [arXiv:1709.00850] [INSPIRE].
  60. [60]
    F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].
  61. [61]
    F. Bastianelli and R. Bonezzi, U(N |M) Quantum Mechanics on Kähler Manifolds, JHEP 05 (2010) 020 [arXiv:1003.1046] [INSPIRE].
  62. [62]
    F. Bastianelli and R. Bonezzi, Quantum theory of massless (p, 0)-forms, JHEP 09 (2011) 018 [arXiv:1107.3661] [INSPIRE].
  63. [63]
    F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p, q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].
  64. [64]
    M. Reuter, Metaplectic spinor fields and global anomalies, Int. J. Mod. Phys. A 10 (1995) 65 [INSPIRE].
  65. [65]
    J.P. Edwards and C. Schubert, Quantum Mechanical Path Integrals in the First Quantised Approach to Quantum Field Theory, in preparation (2018).Google Scholar
  66. [66]
    F. Bastianelli, O. Corradini and A. Zirotti, dimensional regularization for N = 1 supersymmetric σ-models and the worldline formalism, Phys. Rev. D 67 (2003) 104009 [hep-th/0211134] [INSPIRE].
  67. [67]
    W. Bietenholz, J. Nishimura, Y. Susaki and J. Volkholz, A Non-perturbative study of 4-D U(1) non-commutative gauge theory: The Fate of one-loop instability, JHEP 10 (2006) 042 [hep-th/0608072] [INSPIRE].
  68. [68]
    A. Armoni, Comments on perturbative dynamics of noncommutative Yang-Mills theory, Nucl. Phys. B 593 (2001) 229 [hep-th/0005208] [INSPIRE].
  69. [69]
    R. Fresneda, D.M. Gitman and A.E. Shabad, Photon propagation in noncommutative QED with constant external field, Phys. Rev. D 91 (2015) 085005 [arXiv:1501.04987] [INSPIRE].
  70. [70]
    D. D’Ascanio, P. Pisani and D.V. Vassilevich, Renormalization on noncommutative torus, Eur. Phys. J. C 76 (2016) 180 [arXiv:1602.01479] [INSPIRE].
  71. [71]
    M.M. Sheikh-Jabbari, Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus, JHEP 06 (1999) 015 [hep-th/9903107] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    H. Grosse and R. Wulkenhaar, Renormalization of phi**4 theory on noncommutative R 2 in the matrix base, JHEP 12 (2003) 019 [hep-th/0307017] [INSPIRE].
  73. [73]
    E. Langmann, R.J. Szabo and K. Zarembo, Exact solution of noncommutative field theory in background magnetic fields, Phys. Lett. B 569 (2003) 95 [hep-th/0303082] [INSPIRE].
  74. [74]
    E. Langmann, R.J. Szabo and K. Zarembo, Exact solution of quantum field theory on noncommutative phase spaces, JHEP 01 (2004) 017 [hep-th/0308043] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    A. de Goursac, J.-C. Wallet and R. Wulkenhaar, Noncommutative Induced Gauge Theory, Eur. Phys. J. C 51 (2007) 977 [hep-th/0703075] [INSPIRE].
  76. [76]
    H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007) 435 [hep-th/0703169] [INSPIRE].
  77. [77]
    J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [INSPIRE].
  78. [78]
    A. de Goursac, T. Masson and J.-C. Wallet, Noncommutative epsilon-graded connections, J. Noncommut. Geom. 6 (2012) 343 [arXiv:0811.3567] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    D.N. Blaschke, H. Grosse, E. Kronberger, M. Schweda and M. Wohlgenannt, Loop Calculations for the Non-Commutative U(1) Gauge Field Model with Oscillator Term, Eur. Phys. J. C 67 (2010) 575 [arXiv:0912.3642] [INSPIRE].
  80. [80]
    F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].
  81. [81]
    F. Bastianelli, The Path integral for a particle in curved spaces and Weyl anomalies, Nucl. Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].
  82. [82]
    M.G. Schmidt and C. Schubert, Worldline Green functions for multiloop diagrams, Phys. Lett. B 331 (1994) 69 [hep-th/9403158] [INSPIRE].
  83. [83]
    N. Chair and M.M. Sheikh-Jabbari, Pair production by a constant external field in noncommutative QED, Phys. Lett. B 504 (2001) 141 [hep-th/0009037] [INSPIRE].
  84. [84]
    I. Riad and M.M. Sheikh-Jabbari, Noncommutative QED and anomalous dipole moments, JHEP 08 (2000) 045 [hep-th/0008132] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    A. Ilderton, J. Lundin and M. Marklund, Strong Field, Noncommutative QED, SIGMA 6 (2010) 041 [arXiv:1003.4184] [INSPIRE].MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Relativistic Laser Science, Institute for Basic ScienceGwangjuKorea
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  3. 3.INFN, Sezione di BolognaBolognaItaly
  4. 4.Instituto de Física y MatemáticasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico
  5. 5.Instituto de Física La Plata, CONICET-UNLPLa PlataArgentina

Personalised recommendations