Advertisement

Imprints of Schwinger effect on primordial spectra

  • Wan Zhen Chua
  • Qianhang Ding
  • Yi WangEmail author
  • Siyi Zhou
Open Access
Regular Article - Theoretical Physics
  • 33 Downloads

Abstract

We study the Schwinger effect during inflation and its imprints on the primordial power spectrum and bispectrum. The produced charged particles by Schwinger effect during inflation can leave a unique angular dependence on the primodial spectra.

Keywords

Cosmology of Theories beyond the SM Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Di Piazza, C. Muller, K.Z. Hatsagortsyan and C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177 [arXiv:1111.3886] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Ruffini, G. Vereshchagin and S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept. 487 (2010) 1 [arXiv:0910.0974] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of relaxed inflation, JHEP 02 (2018) 084 [arXiv:1706.03072] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Relaxed inflation, arXiv:1706.00438 [INSPIRE].
  6. [6]
    T.E. Clarke, P.P. Kronberg and H. Boehringer, A new radioX-ray probe of galaxy cluster magnetic fields, Astrophys. J. 547 (2001) L111 [astro-ph/0011281] [INSPIRE].
  7. [7]
    F. Govoni and L. Feretti, Magnetic field in clusters of galaxies, Int. J. Mod. Phys. D 13 (2004) 1549 [astro-ph/0410182] [INSPIRE].
  8. [8]
    C. Vogt and T.A. Ensslin, A Bayesian view on Faraday rotation mapsSeeing the magnetic power spectra in galaxy clusters, Astron. Astrophys. 434 (2005) 67 [astro-ph/0501211] [INSPIRE].
  9. [9]
    K. Dolag, M. Kachelriess, S. Ostapchenko and R. Tomas, Lower limit on the strength and filling factor of extragalactic magnetic fields, Astrophys. J. 727 (2011) L4 [arXiv:1009.1782] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Neronov and I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science 328 (2010) 73 [arXiv:1006.3504] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Tavecchio et al., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, Mon. Not. Roy. Astron. Soc. 406 (2010) L70 [arXiv:1004.1329] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.S. Turner and L.M. Widrow, Inflation produced, large scale magnetic fields, Phys. Rev. D 37 (1988) 2743 [INSPIRE].
  13. [13]
    B. Ratra, Cosmologicalseedmagnetic field from inflation, Astrophys. J. 391 (1992) L1 [INSPIRE].
  14. [14]
    A. Dolgov, Breaking of conformal invariance and electromagnetic field generation in the universe, Phys. Rev. D 48 (1993) 2499 [hep-ph/9301280] [INSPIRE].
  15. [15]
    M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology, Phys. Rev. Lett. 75 (1995) 3796 [hep-th/9504083] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Giovannini, Magnetogenesis and the dynamics of internal dimensions, Phys. Rev. D 62 (2000) 123505 [hep-ph/0007163] [INSPIRE].
  17. [17]
    K. Bamba and J. Yokoyama, Large scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev. D 69 (2004) 043507 [astro-ph/0310824] [INSPIRE].
  18. [18]
    K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP 02 (2007) 030 [astro-ph/0611701] [INSPIRE].
  19. [19]
    M. Giovannini and K.E. Kunze, Magnetized CMB observables: a dedicated numerical approach, Phys. Rev. D 77 (2008) 063003 [arXiv:0712.3483] [INSPIRE].
  20. [20]
    J. Martin and J. Yokoyama, Generation of large-scale magnetic fields in single-field inflation, JCAP 01 (2008) 025 [arXiv:0711.4307] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Subramanian, Magnetic fields in the early universe, Astron. Nachr. 331 (2010) 110 [arXiv:0911.4771] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept. 505 (2011) 1 [arXiv:1007.3891] [INSPIRE].
  23. [23]
    R. Durrer, Cosmic magnetic fields and the CMB, New Astron. Rev. 51 (2007) 275 [astro-ph/0609216] [INSPIRE].
  24. [24]
    K. Atmjeet, I. Pahwa, T.R. Seshadri and K. Subramanian, Cosmological magnetogenesis from extra-dimensional Gauss Bonnet gravity, Phys. Rev. D 89 (2014) 063002 [arXiv:1312.5815] [INSPIRE].
  25. [25]
    T. Fujita, R. Namba, Y. Tada, N. Takeda and H. Tashiro, Consistent generation of magnetic fields in axion inflation models, JCAP 05 (2015) 054 [arXiv:1503.05802] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Domènech, C. Lin and M. Sasaki, Inflationary magnetogenesis with broken local U(1) symmetry, EPL 115 (2016) 19001 [arXiv:1512.01108] [INSPIRE].
  27. [27]
    C. Stahl, Schwinger effect impacting primordial magnetogenesis, Nucl. Phys. B 939 (2019) 95 [arXiv:1806.06692] [INSPIRE].
  28. [28]
    V. Demozzi, V. Mukhanov and H. Rubinstein, Magnetic fields from inflation?, JCAP 08 (2009) 025 [arXiv:0907.1030] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.-a. Watanabe, S. Kanno and J. Soda, Inflationary universe with anisotropic hair, Phys. Rev. Lett. 102 (2009) 191302 [arXiv:0902.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Kitamoto, Schwinger effect in inflaton-driven electric field, Phys. Rev. D 98 (2018) 103512 [arXiv:1807.03753] [INSPIRE].
  31. [31]
    S. Kanno, J. Soda and M.A. Watanabe, Cosmological magnetic fields from inflation and backreaction, JCAP 12 (2009) 009 [arXiv:0908.3509] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.P. Kim and D.N. Page, Schwinger pair production in dS 2 and AdS 2, Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555] [INSPIRE].
  33. [33]
    M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP 04 (2014) 009 [arXiv:1401.4137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C. Stahl, E. Strobel and S.-S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime, Phys. Rev. D 93 (2016) 025004 [arXiv:1507.01686] [INSPIRE].
  35. [35]
    T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP 10 (2014) 166 [arXiv:1408.4141] [INSPIRE].
  36. [36]
    M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3 + 1) de Sitter, JCAP 10 (2018) 023 [arXiv:1809.08977] [INSPIRE].
  37. [37]
    T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime, JCAP 07 (2016) 012 [arXiv:1603.06172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    J.-J. Geng et al., Schwinger pair production by electric field coupled to inflaton, JCAP 02 (2018) 018 [arXiv:1706.02833] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Hayashinaka and S.-S. Xue, Physical renormalization condition for de Sitter QED, Phys. Rev. D 97 (2018) 105010 [arXiv:1802.03686] [INSPIRE].
  40. [40]
    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
  41. [41]
    X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Baumann and D. Green, Signatures of supersymmetry from the Early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
  43. [43]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  44. [44]
    L.H. Ford, Inflation driven by a vector field, Phys. Rev. D 40 (1989) 967 [INSPIRE].
  45. [45]
    S. Yokoyama and J. Soda, Primordial statistical anisotropy generated at the end of inflation, JCAP 08 (2008) 005 [arXiv:0805.4265] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Emami, H. Firouzjahi, S.M. Sadegh Movahed and M. Zarei, Anisotropic inflation from charged scalar fields, JCAP 02 (2011) 005 [arXiv:1010.5495] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Soda, Statistical anisotropy from anisotropic inflation, Class. Quant. Grav. 29 (2012) 083001 [arXiv:1201.6434] [INSPIRE].
  48. [48]
    P. Adshead and A. Liu, Anisotropic massive gauge-flation, JCAP 07 (2018) 052 [arXiv:1803.07168] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H.W.H. Tahara, S. Nishi, T. Kobayashi and J. Yokoyama, Self-anisotropizing inflationary universe in Horndeski theory and beyond, JCAP 07 (2018) 058 [arXiv:1805.00186] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.D. Barrow and S. Hervik, Anisotropically inflating universes, Phys. Rev. D 73 (2006) 023007 [gr-qc/0511127] [INSPIRE].
  51. [51]
    J.D. Barrow and S. Hervik, On the evolution of universes in quadratic theories of gravity, Phys. Rev. D 74 (2006) 124017 [gr-qc/0610013] [INSPIRE].
  52. [52]
    J.D. Barrow and S. Hervik, Simple types of anisotropic inflation, Phys. Rev. D 81 (2010) 023513 [arXiv:0911.3805] [INSPIRE].
  53. [53]
    A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    R. Emami, Anisotropic inflation and cosmological observations, arXiv:1511.01683 [INSPIRE].
  55. [55]
    P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP 11 (2015) 021 [arXiv:1508.00891] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P. Adshead et al., Phenomenology of fermion production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    X. Chen, Primordial non-gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Wang, Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity. Volume 1, Wiley, New York U.S.A. (1972).Google Scholar
  63. [63]
    S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco U.S.A. (2004).Google Scholar
  64. [64]
    R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive interactions: heavy particles and non-Gaussianity, JCAP 10 (2017) 058 [arXiv:1606.00513] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP 06 (2018) 013 [arXiv:1801.05688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    X. Chen et al., Quantum standard clocks in the primordial trispectrum, JCAP 05 (2018) 049 [arXiv:1803.04412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    H. Lee, D. Baumann and G.L. Pimentel, Non-gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to standard model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model background of the cosmological collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    Y.-P. Wu and J. Yokoyama, Loop corrections to primordial fluctuations from inflationary phase transitions, JCAP 05 (2018) 009 [arXiv:1704.05026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
  74. [74]
    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content: extra spin-2 field, JCAP 08 (2018) 016 [arXiv:1806.00850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    E. Bavarsad, S.P. Kim, C. Stahl and S.-S. Xue, Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, Phys. Rev. D 97 (2018) 025017 [arXiv:1707.03975] [INSPIRE].
  79. [79]
    T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, JCAP 07 (2016) 010 [arXiv:1603.04165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger effect by an SU(2) gauge field during inflation, JHEP 02 (2019) 041 [arXiv:1805.09318] [INSPIRE].
  81. [81]
    A. Maleknejad and E. Komatsu, Production and backreaction of spin-2 particles of SU(2) gauge field during inflation, arXiv:1808.09076 [INSPIRE].
  82. [82]
    E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial gravitational waves from axion-gauge fields dynamics, JCAP 01 (2017) 019 [arXiv:1608.04216] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C. Stahl and S.-S. Xue, Schwinger effect and backreaction in de Sitter spacetime, Phys. Lett. B 760 (2016) 288 [arXiv:1603.07166] [INSPIRE].
  84. [84]
    E. Bavarsad, C. Stahl and S.-S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, Phys. Rev. D 94 (2016) 104011 [arXiv:1602.06556] [INSPIRE].
  85. [85]
    O.O. Sobol, E.V. Gorbar, M. Kamarpour and S.I. Vilchinskii, Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis, Phys. Rev. D 98 (2018) 063534 [arXiv:1807.09851] [INSPIRE].
  86. [86]
    H. Firouzjahi et al., Charged vector inflation, arXiv:1812.07464 [INSPIRE].
  87. [87]
    K. Dimopoulos, M. Karciauskas, D.H. Lyth and Y. Rodriguez, Statistical anisotropy of the curvature perturbation from vector field perturbations, JCAP 05 (2009) 013 [arXiv:0809.1055] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    K. Dimopoulos, M. Karciauskas and J.M. Wagstaff, Vector curvaton without instabilities, Phys. Lett. B 683 (2010) 298 [arXiv:0909.0475] [INSPIRE].
  89. [89]
    J.C. Bueno Sanchez and K. Dimopoulos, Inflationary buildup of a vector field condensate and its cosmological consequences, JCAP 01 (2014) 012 [arXiv:1308.3739] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    A.J. Tolley and M. Wyman, The gelaton scenario: equilateral non-gaussianity from multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].
  91. [91]
    A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev. D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].
  92. [92]
    A. Achucarro et al., Effective theories of single field inflation when heavy fields matter, JHEP 05 (2012) 066 [arXiv:1201.6342] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Pi and M. Sasaki, Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, Effective field theory of weakly coupled inflationary models, JCAP 04 (2013) 004 [arXiv:1210.3020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi single field inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    X. Tong, Y. Wang and S. Zhou, On the effective field theory for quasi-single field inflation, JCAP 11 (2017) 045 [arXiv:1708.01709] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A.V. Iyer et al., Strongly coupled quasi-single field inflation, JCAP 01 (2018) 041 [arXiv:1710.03054] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  99. [99]
    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Wan Zhen Chua
    • 1
  • Qianhang Ding
    • 1
    • 2
  • Yi Wang
    • 1
    • 2
    Email author
  • Siyi Zhou
    • 1
    • 2
  1. 1.Department of PhysicsThe Hong Kong University of Science and TechnologyHong KongP.R. China
  2. 2.Jockey Club Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongP.R. China

Personalised recommendations