Two-loop amplitudes for Higgs plus jet production involving a modified trilinear Higgs coupling

  • Martin Gorbahn
  • Ulrich HaischEmail author
Open Access
Regular Article - Theoretical Physics


We calculate the contributions to the two-loop scattering amplitudes hgg, hggg and \( h\to q\overline{q}g \) that arise from a modified trilinear Higgs coupling λ. Analytic expressions are obtained by performing an asymptotic expansion near the limit of infinitely heavy top quark. The calculated amplitudes are necessary to study the impact of the \( \mathcal{O}\left(\lambda \right) \) corrections to the transverse momentum distributions (pT,h) in single-Higgs production at hadron colliders for low and moderate values of pT,h.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, Phys. Rev. D 90 (2014) 015001 [Erratum ibid. D 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].
  2. [2]
    M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: ggh and hγγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].
  3. [3]
    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, Eur. Phys. J. C 77 (2017) 887 [arXiv:1709.08649] [INSPIRE].
  6. [6]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Maltoni, D. Pagani and X. Zhao, Constraining the Higgs self-couplings at e + e colliders, JHEP 07 (2018) 087 [arXiv:1802.07616] [INSPIRE].
  8. [8]
    G. Degrassi, M. Fedele and P.P. Giardino, Constraints on the trilinear Higgs self coupling from precision observables, JHEP 04 (2017) 155 [arXiv:1702.01737] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G.D. Kribs, A. Maier, H. Rzehak, M. Spannowsky and P. Waite, Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction, Phys. Rev. D 95 (2017) 093004 [arXiv:1702.07678] [INSPIRE].
  10. [10]
    S. Di Vita, C. Grojean, G. Panico, M. Riembau and T. Vantalon, A global view on the Higgs self-coupling, JHEP 09 (2017) 069 [arXiv:1704.01953] [INSPIRE].
  11. [11]
    U. Haisch, in preparation.Google Scholar
  12. [12]
    M. Steinhauser, Results and techniques of multiloop calculations, Phys. Rept. 364 (2002) 247 [hep-ph/0201075] [INSPIRE].
  13. [13]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].
  14. [14]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop ggHg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104 [arXiv:1610.03747] [INSPIRE].
  15. [15]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop amplitudes for qgHq and \( q\overline{q}\to Hg \) mediated by a nearly massless quark, Phys. Rev. D 95 (2017) 054012 [arXiv:1702.00426] [INSPIRE].
  16. [16]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  17. [17]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  18. [18]
    M. Steinhauser, MATAD: A Program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].
  19. [19]
    O.V. Tarasov, An Algorithm for small momentum expansion of Feynman diagrams, in Artificial intelligence in high-energy and nuclear physics95. Proceedings, 4th International Workshop On Software Engineering, Artificial Intelligence and Expert Systems, Pisa, Italy, April 3-8, 1995, pp. 0161-166 (1995) [hep-ph/9505277] [INSPIRE].
  20. [20]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].
  21. [21]
    O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].
  22. [22]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  23. [23]
    W. Bizon, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, arXiv:1810.04665 [INSPIRE].
  24. [24]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, 0(αα s2) correction to the electroweak ρ parameter, Phys. Lett. B 336 (1994) 560 [Erratum ibid. B 349 (1995) 597] [hep-ph/9406363] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUnited Kingdom
  2. 2.Max Planck Institute for PhysicsMünchenGermany

Personalised recommendations