Advertisement

On structure constants with two spinning twist-two operators

  • Marco S. BianchiEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

I consider three-point functions of one protected and two unprotected twist-two operators ccwith spin in \( \mathcal{N}=4 \) SYM at weak coupling. At one loop I formulate an empiric conjecture for the dependence of the corresponding structure constants on the spins of the operators. Using such an ansatz and some input from explicit perturbative results, I fix completely various infinite sets of one-loop structure constants of these three-point functions. Finally, I determine the two-loop corrections to the structure constants for a few fixed values of the spins of the operators.

Keywords

Conformal Field Theory Integrable Field Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar N = 4 SYM theory,arXiv:1505.06745[INSPIRE].
  2. [2]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    B. Eden and A. Sfondrini, Three-point functions in \( \mathcal{N}=4 \) SYM: the hexagon proposal at three loops, JHEP 02 (2016) 165 [arXiv:1510.01242] [INSPIRE].
  4. [4]
    B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing hexagons at three loops, Nucl. Phys. B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE].
  5. [5]
    B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM, arXiv:1608.04222 [INSPIRE].
  6. [6]
    V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079 [arXiv:1607.02195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Basso, V. Goncalves and S. Komatsu, Structure constants at wrapping order, JHEP 05 (2017) 124 [arXiv:1702.02154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Georgoudis, V. Goncalves and R. Pereira, Konishi OPE coefficient at the five loop order, JHEP 11 (2018) 184 [arXiv:1710.06419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in \( \mathcal{N}=4 \) SYM, JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].
  10. [10]
    T. Fleury and S. Komatsu, Hexagonalization of correlation functions, JHEP 01 (2017) 130 [arXiv:1611.05577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Fleury and S. Komatsu, Hexagonalization of correlation functions II: two-particle contributions, JHEP 02 (2018) 177 [arXiv:1711.05327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Basso et al., Asymptotic four point functions, arXiv:1701.04462 [INSPIRE].
  13. [13]
    D. Chicherin, A. Georgoudis, V. Gonçalves and R. Pereira, All five-loop planar four-point functions of half-BPS operators in \( \mathcal{N}=4 \) SYM, JHEP 11 (2018) 069 [arXiv:1809.00551] [INSPIRE].
  14. [14]
    F. Coronado, Perturbative four-point functions in planar \( \mathcal{N}=4 \) SYM from hexagonalization, JHEP 01 (2019) 056 [arXiv:1811.00467] [INSPIRE].
  15. [15]
    T. Bargheer et al., Handling handles: nonplanar integrability in \ = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 121 (2018) 231602 [arXiv:1711.05326] [INSPIRE].
  16. [16]
    B. Eden, Y. Jiang, D. le Plat and A. Sfondrini, Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP 02 (2018) 170 [arXiv:1710.10212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Bargheer et al., Handling handles. Part II. Stratification and data analysis, JHEP 11 (2018) 095 [arXiv:1809.09145] [INSPIRE].
  18. [18]
    J. Plefka and K. Wiegandt, Three-point functions of twist-two operators in N = 4 SYM at one loop, JHEP 10 (2012) 177 [arXiv:1207.4784] [INSPIRE].
  19. [19]
    M.S. Bianchi, A note on three-point functions of unprotected operators, JHEP 03 (2019) 154 [arXiv:1809.04376] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    N. Drukker and J. Plefka, The Structure of n-point functions of chiral primary operators in N = 4 super Yang-Mills at one-loop, JHEP 04(2009) 001 [arXiv:0812.3341] [INSPIRE].
  21. [21]
    A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, Anomalous dimensions of Wilson operators in N = 4 SYM theory, Phys. Lett. B 557 (2003) 114 [hep-ph/0301021] [INSPIRE].
  22. [22]
    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
  23. [23]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. 0611 (2006) P11014 [hep-th/0603157] [INSPIRE].
  25. [25]
    A.V. Belitsky, G.P. Korchemsky and D. Mueller, Towards Baxter equation in supersymmetric Yang-Mills theories, Nucl. Phys. B 768 (2007) 116 [hep-th/0605291] [INSPIRE].
  26. [26]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
  27. [27]
    V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys. B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].
  28. [28]
    A.V. Belitsky et al., Anomalous dimensions of leading twist conformal operators, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936] [INSPIRE].
  29. [29]
    G.M. Sotkov and R.P. Zaikov, Conformal invariant two point and three point functions for fields with arbitrary spin, Rept. Math. Phys. 12 (1977) 375 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
  31. [31]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. 100B (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
  33. [33]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  36. [36]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  37. [37]
    S. Laporta and E. Remiddi, The Analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [INSPIRE].
  38. [38]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  39. [39]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  40. [40]
    F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].
  41. [41]
    D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations