Advertisement

Collider and gravitational wave complementarity in exploring the singlet extension of the standard model

  • Alexandre Alves
  • Tathagata Ghosh
  • Huai-Ke GuoEmail author
  • Kuver Sinha
  • Daniel Vagie
Open Access
Regular Article - Theoretical Physics
  • 32 Downloads

Abstract

We present a dedicated complementarity study of gravitational wave and collider measurements of the simplest extension of the Higgs sector: the singlet scalar augmented Standard Model. We study the following issues: (i) the electroweak phase transition patterns admitted by the model, and the proportion of parameter space for each pattern; (ii) the regions of parameter space that give detectable gravitational waves at future space-based detectors; and (iii) the current and future collider measurements of di-Higgs production, as well as searches for a heavy weak diboson resonance, and how these searches interplay with regions of parameter space that exhibit strong gravitational wave signals. We carefully investigate the behavior of the normalized energy released during the phase transition as a function of the model parameters, address subtle issues pertaining to the bubble wall velocity, and provide a description of different fluid velocity profiles. On the collider side, we identify the subset of points that are most promising in terms of di-Higgs and weak diboson production studies while also giving detectable signals at LISA, setting the stage for future benchmark points that can be used by both communities.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  2. [2]
    LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
  3. [3]
    K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev. D 83 (2011) 044011 [Erratum ibid. D 95 (2017) 109901] [arXiv:1101.3940] [INSPIRE].
  4. [4]
    X. Gong et al., Descope of the ALIA mission, J. Phys. Conf. Ser. 610 (2015) 012011 [arXiv:1410.7296] [INSPIRE].
  5. [5]
    TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].
  6. [6]
    A. Klein et al., Science with the space-based interferometer eLISA: Supermassive black hole binaries, Phys. Rev. D 93 (2016) 024003 [arXiv:1511.05581] [INSPIRE].
  7. [7]
    S. Babak et al., Science with the space-based interferometer LISA. V: extreme mass-ratio inspirals, Phys. Rev. D 95 (2017) 103012 [arXiv:1703.09722] [INSPIRE].
  8. [8]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].Google Scholar
  9. [9]
    C. Grojean and G. Servant, Gravitational waves from phase transitions at the electroweak scale and beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].
  10. [10]
    P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Alanne, K. Tuominen and V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, Nucl. Phys. B 889 (2014) 692 [arXiv:1407.0688] [INSPIRE].
  12. [12]
    M. Breitbach et al., Dark, cold and noisy: constraining secluded hidden sectors with gravitational waves, arXiv:1811.11175 [INSPIRE].
  13. [13]
    M. Aoki, H. Goto and J. Kubo, Gravitational waves from hidden QCD phase transition, Phys. Rev. D 96 (2017) 075045 [arXiv:1709.07572] [INSPIRE].
  14. [14]
    Y. Bai, A.J. Long and S. Lu, Dark quark nuggets, arXiv:1810.04360 [INSPIRE].
  15. [15]
    R.-G. Cai et al., The gravitational-wave physics, Natl. Sci. Rev. 4 (2017) 687 [arXiv:1703.00187] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].
  17. [17]
    C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Mazumdar and G. White, Cosmic phase transitions: their applications and experimental signatures, arXiv:1811.01948 [INSPIRE].
  19. [19]
    D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].
  20. [20]
    A. Beniwal, Investigation of Higgs portal dark matter models: from collider, indirect and direct searches to electroweak baryogenesis, Ph.D. thesis, Adelaide University, Adelaide, Australia (2018).
  21. [21]
    D. Croon, T.E. Gonzalo and G. White, Gravitational waves from a Pati-Salam phase transition, JHEP 02 (2019) 083 [arXiv:1812.02747] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Hashino et al., Fingerprinting models of first-order phase transitions by the synergy between collider and gravitational-wave experiments, arXiv:1809.04994 [INSPIRE].
  23. [23]
    C. Marzo, L. Marzola and V. Vaskonen, Phase transition and vacuum stability in the classically conformal B-L model, arXiv:1811.11169 [INSPIRE].
  24. [24]
    A. Beniwal et al., Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Hashino et al., Gravitational waves from first order electroweak phase transition in models with the U(1)X gauge symmetry, JHEP 06 (2018) 088 [arXiv:1802.02947] [INSPIRE].
  26. [26]
    A. Addazi and A. Marciano, Gravitational waves from dark first order phase transitions and dark photons, Chin. Phys. C 42 (2018) 023107 [arXiv:1703.03248] [INSPIRE].
  27. [27]
    A. Addazi, Y.-F. Cai and A. Marciano, Testing dark matter models with radio telescopes in light of gravitational wave astronomy, Phys. Lett. B 782 (2018) 732 [arXiv:1712.03798] [INSPIRE].
  28. [28]
    C.-W. Chiang and E. Senaha, On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U(1) models, Phys. Lett. B 774 (2017) 489 [arXiv:1707.06765] [INSPIRE].
  29. [29]
    B. Imtiaz, Y.-F. Cai and Y. Wan, Two-field cosmological phase transitions and gravitational waves in the singlet Majoron model, Eur. Phys. J. C 79 (2019) 25 [arXiv:1804.05835] [INSPIRE].
  30. [30]
    Y. Chen, M. Huang and Q.-S. Yan, Gravitation waves from QCD and electroweak phase transitions, JHEP 05 (2018) 178 [arXiv:1712.03470] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Vieu, A.P. Morais and R. Pasechnik, Electroweak phase transitions in multi-Higgs models: the case of Trinification-inspired THDSM, JCAP 07 (2018) 014 [arXiv:1801.02670] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Basler, M. Mühlleitner and J. Wittbrodt, The CP-violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production, JHEP 03 (2018) 061 [arXiv:1711.04097] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Jinno, S. Lee, H. Seong and M. Takimoto, Gravitational waves from first-order phase transitions: Towards model separation by bubble nucleation rate, JCAP 11 (2017) 050 [arXiv:1708.01253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    W. Chao, W.-F. Cui, H.-K. Guo and J. Shu, Gravitational wave imprint of new symmetry breaking, arXiv:1707.09759 [INSPIRE].
  35. [35]
    W. Huang et al., New insights in the electroweak phase transition in the NMSSM, Phys. Rev. D 91 (2015) 025006 [arXiv:1405.1152] [INSPIRE].
  36. [36]
    K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, JCAP 07 (2017) 044 [arXiv:1704.00219] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Bian, H.-K. Guo and J. Shu, Gravitational waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM, Chin. Phys. C 42 (2018) 093106 [arXiv:1704.02488] [INSPIRE].
  38. [38]
    A. Hektor, K. Kannike and V. Vaskonen, Modifying dark matter indirect detection signals by thermal effects at freeze-out, Phys. Rev. D 98 (2018) 015032 [arXiv:1801.06184] [INSPIRE].
  39. [39]
    F.P. Huang and J.-H. Yu, Exploring inert dark matter blind spots with gravitational wave signatures, Phys. Rev. D 98 (2018) 095022 [arXiv:1704.04201] [INSPIRE].
  40. [40]
    P.H. Ghorbani, Electroweak phase transition in the scale invariant standard model, Phys. Rev. D 98 (2018) 115016 [arXiv:1711.11541] [INSPIRE].
  41. [41]
    Z. Kang, P. Ko and T. Matsui, Strong first order EWPT & strong gravitational waves in Z 3 -symmetric singlet scalar extension, JHEP 02 (2018) 115 [arXiv:1706.09721] [INSPIRE].
  42. [42]
    A. Addazi and A. Marciano, Limiting majoron self-interactions from gravitational wave experiments, Chin. Phys. C 42 (2018) 023105 [arXiv:1705.08346] [INSPIRE].
  43. [43]
    C.-Y. Chen, J. Kozaczuk and I.M. Lewis, Non-resonant collider signatures of a singlet-driven electroweak phase transition, JHEP 08 (2017) 096 [arXiv:1704.05844] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L. Marzola, A. Racioppi and V. Vaskonen, Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model, Eur. Phys. J. C 77 (2017) 484 [arXiv:1704.01034] [INSPIRE].
  45. [45]
    A. Kobakhidze, C. Lagger, A. Manning and J. Yue, Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays, Eur. Phys. J. C 77 (2017) 570 [arXiv:1703.06552] [INSPIRE].
  46. [46]
    R. Zhou, W. Cheng, X. Deng, L. Bian and Y. Wu, Electroweak phase transition and Higgs phenomenology in the Georgi-Machacek model, JHEP 01 (2019) 216 [arXiv:1812.06217] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P.S.B. Dev and A. Mazumdar, Probing the scale of new physics by advanced LIGO/VIRGO, Phys. Rev. D 93 (2016) 104001 [arXiv:1602.04203] [INSPIRE].
  49. [49]
    C. Balázs, A. Fowlie, A. Mazumdar and G. White, Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the Standard Model, Phys. Rev. D 95 (2017) 043505 [arXiv:1611.01617] [INSPIRE].
  50. [50]
    A. Ahriche, K. Hashino, S. Kanemura and S. Nasri, Gravitational waves from phase transitions in models with charged singlets, Phys. Lett. B 789 (2019) 119 [arXiv:1809.09883] [INSPIRE].
  51. [51]
    V.R. Shajiee and A. Tofighi, Electroweak phase transition, gravitational waves and dark matter in two scalar singlet extension of the standard model, arXiv:1811.09807 [INSPIRE].
  52. [52]
    L. Bian and X. Liu, Two-step strongly first-order electroweak phase transition modified FIMP dark matter, gravitational wave signals and the neutrino mass, Phys. Rev. D 99 (2019) 055003 [arXiv:1811.03279] [INSPIRE].
  53. [53]
    N. Blinov, J. Kozaczuk, D.E. Morrissey and C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking, Phys. Rev. D 92 (2015) 035012 [arXiv:1504.05195] [INSPIRE].
  54. [54]
    S. Inoue, G. Ovanesyan and M.J. Ramsey-Musolf, Two-step electroweak baryogenesis, Phys. Rev. D 93 (2016) 015013 [arXiv:1508.05404] [INSPIRE].
  55. [55]
    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
  56. [56]
    J.M. No and M. Spannowsky, Signs of heavy Higgs bosons at CLIC: An e + e road to the electroweak phase transition, arXiv:1807.04284 [INSPIRE].
  57. [57]
    C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].
  58. [58]
    M. Chala, M. Ramos and M. Spannowsky, Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff, Eur. Phys. J. C 79 (2019) 156 [arXiv:1812.01901] [INSPIRE].
  59. [59]
    R.-G. Cai, M. Sasaki and S.-J. Wang, The gravitational waves from the first-order phase transition with a dimension-six operator, JCAP 08 (2017) 004 [arXiv:1707.03001] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Alanne, T. Hugle, M. Platscher and K. Schmitz, Low-scale leptogenesis assisted by a real scalar singlet, JCAP 03 (2019) 037 [arXiv:1812.04421] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Kannike and M. Raidal, Phase transitions and gravitational wave tests of pseudo-goldstone dark matter in the softly broken U(1) scalar singlet model, arXiv:1901.03333 [INSPIRE].
  62. [62]
    A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Cheng and L. Bian, From inflation to cosmological electroweak phase transition with a complex scalar singlet, Phys. Rev. D 98 (2018) 023524 [arXiv:1801.00662] [INSPIRE].
  64. [64]
    X.-J. Bi et al., Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Phys. Rev. D 92 (2015) 023507 [arXiv:1503.03749] [INSPIRE].
  65. [65]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].
  67. [67]
    T. Huang et al., Resonant di-Higgs boson production in the bbW W channel: probing the electroweak phase transition at the LHC, Phys. Rev. D 96 (2017) 035007 [arXiv:1701.04442] [INSPIRE].
  68. [68]
    T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].
  69. [69]
    A.V. Kotwal, M.J. Ramsey-Musolf, J.M. No and P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier, Phys. Rev. D 94 (2016) 035022 [arXiv:1605.06123] [INSPIRE].
  70. [70]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].
  71. [71]
    J. Kozaczuk, Bubble expansion and the viability of singlet-driven electroweak baryogenesis, JHEP 10 (2015) 135 [arXiv:1506.04741] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    I.M. Lewis and M. Sullivan, Benchmarks for double Higgs production in the singlet extended standard model at the LHC, Phys. Rev. D 96 (2017) 035037 [arXiv:1701.08774] [INSPIRE].
  73. [73]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
  74. [74]
    A. Alves, T. Ghosh and K. Sinha, Can we discover double Higgs production at the LHC?, Phys. Rev. D 96 (2017) 035022 [arXiv:1704.07395] [INSPIRE].
  75. [75]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
  77. [77]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the standard model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].
  78. [78]
    W. Bizon, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, arXiv:1810.04665 [INSPIRE].
  79. [79]
    T. Liu, K.-F. Lyu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction, Phys. Rev. D 98 (2018) 093004 [arXiv:1803.04359] [INSPIRE].
  80. [80]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].
  81. [81]
    C.-Y. Chen, H.-L. Li and M. Ramsey-Musolf, CP-Violation in the two Higgs doublet model: from the LHC to EDMs, Phys. Rev. D 97 (2018) 015020 [arXiv:1708.00435] [INSPIRE].
  82. [82]
    H.-K. Guo et al., Lepton-flavored electroweak baryogenesis, Phys. Rev. D 96 (2017) 115034 [arXiv:1609.09849] [INSPIRE].
  83. [83]
    G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery, Phys. Rev. D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].
  84. [84]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  85. [85]
    M. Carena, Z. Liu and M. Riembau, Probing the electroweak phase transition via enhanced di-Higgs boson production, Phys. Rev. D 97 (2018) 095032 [arXiv:1801.00794] [INSPIRE].
  86. [86]
    D. López-Val and T. Robens, Δr and the W-boson mass in the singlet extension of the standard model, Phys. Rev. D 90 (2014) 114018 [arXiv:1406.1043] [INSPIRE].
  87. [87]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
  88. [88]
    K. Hagiwara, S. Matsumoto, D. Haidt and C.S. Kim, A novel approach to confront electroweak data and theory, Z. Phys. C 64 (1994) 559 [Erratum ibid. C 68 (1995) 352] [hep-ph/9409380] [INSPIRE].
  89. [89]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
  90. [90]
    CDF collaboration, Precise measurement of the W -boson mass with the CDF II detector, Phys. Rev. Lett. 108 (2012) 151803 [arXiv:1203.0275] [INSPIRE].
  91. [91]
    D0 collaboration, Measurement of the W boson mass with the D0 detector, Phys. Rev. D 89 (2014) 012005 [arXiv:1310.8628] [INSPIRE].
  92. [92]
    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].Google Scholar
  93. [93]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
  95. [95]
    M. Quirós, Finite temperature field theory and phase transitions, in the proceedings of the Summer School in High-energy physics and cosmology, June 29-July 17, Trieste, Italy (1998), hep-ph/9901312 [INSPIRE].
  96. [96]
    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
  97. [97]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
  99. [99]
    A. Alves, T. Ghosh, H.-K. Guo and K. Sinha, Resonant di-Higgs production at gravitational wave benchmarks: a collider study using machine learning, JHEP 12 (2018) 070 [arXiv:1808.08974] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M.S. Turner, E.J. Weinberg and L.M. Widrow, Bubble nucleation in first order inflation and other cosmological phase transitions, Phys. Rev. D 46 (1992) 2384 [INSPIRE].
  101. [101]
    G.V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].
  102. [102]
    A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, Precision decay rate calculations in quantum field theory, Phys. Rev. D 95 (2017) 085011 [arXiv:1604.06090] [INSPIRE].
  103. [103]
    S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge U.K. (2013).Google Scholar
  104. [104]
    W. Chao, H.-K. Guo and J. Shu, Gravitational wave signals of electroweak phase transition triggered by dark matter, JCAP 09 (2017) 009 [arXiv:1702.02698] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys. B 631 (2002) 342 [gr-qc/0107033] [INSPIRE].
  106. [106]
    M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].
  107. [107]
    J.M. Cline, Baryogenesis, talk given ath Les Houches Summer SchoolSession 86: Particle Physics and Cosmology: The Fabric of Spacetime, July 31-August 25, Les Houches, France (2006), hep-ph/0609145 [INSPIRE].
  108. [108]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  109. [109]
    M. Chala, C. Krause and G. Nardini, Signals of the electroweak phase transition at colliders and gravitational wave observatories, JHEP 07 (2018) 062 [arXiv:1802.02168] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    H.H. Patel and M.J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].
  111. [111]
    M.J. Ramsey-Musolf, P. Winslow and G. White, Color breaking baryogenesis, Phys. Rev. D 97 (2018) 123509 [arXiv:1708.07511] [INSPIRE].
  112. [112]
    A. Angelescu and P. Huang, Multistep strongly first order phase transitions from new fermions at the TeV scale, Phys. Rev. D 99 (2019) 055023 [arXiv:1812.08293] [INSPIRE].
  113. [113]
    J.M. No, Large gravitational wave background signals in electroweak baryogenesis scenarios, Phys. Rev. D 84 (2011) 124025 [arXiv:1103.2159] [INSPIRE].
  114. [114]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    H. Kurki-Suonio and M. Laine, Supersonic deflagrations in cosmological phase transitions, Phys. Rev. D 51 (1995) 5431 [hep-ph/9501216] [INSPIRE].
  116. [116]
    P.J. Steinhardt, Relativistic detonation waves and bubble growth in false vacuum decay, Phys. Rev. D 25 (1982) 2074 [INSPIRE].
  117. [117]
    P. John and M.G. Schmidt, Do stops slow down electroweak bubble walls?, Nucl. Phys. B 598 (2001) 291 [Erratum ibid. B 648 (2003) 449] [hep-ph/0002050] [INSPIRE].
  118. [118]
    V. Cirigliano, S. Profumo and M.J. Ramsey-Musolf, Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM, JHEP 07 (2006) 002 [hep-ph/0603246] [INSPIRE].
  119. [119]
    D.J.H. Chung, B. Garbrecht, M. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    W. Chao and M.J. Ramsey-Musolf, Electroweak baryogenesis, electric dipole moments and Higgs diphoton decays, JHEP 10 (2014) 180 [arXiv:1406.0517] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].
  122. [122]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
  123. [123]
    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric dipole moments of nucleons, nuclei and atoms: the standard model and beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
  125. [125]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].
  126. [126]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].
  128. [128]
    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    R. Jinno and M. Takimoto, Gravitational waves from bubble collisions: An analytic derivation, Phys. Rev. D 95 (2017) 024009 [arXiv:1605.01403] [INSPIRE].
  130. [130]
    R. Jinno and M. Takimoto, Gravitational waves from bubble dynamics: beyond the envelope, JCAP 01 (2019) 060 [arXiv:1707.03111] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].
  132. [132]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].
  133. [133]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009 [arXiv:0903.4099] [INSPIRE].CrossRefGoogle Scholar
  134. [134]
    D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  135. [135]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [arXiv:1704.05871] [INSPIRE].
  136. [136]
    M. Hindmarsh, Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe, Phys. Rev. Lett. 120 (2018) 071301 [arXiv:1608.04735] [INSPIRE].
  137. [137]
    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources, JCAP 06 (2012) 027 [arXiv:1201.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].
  140. [140]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    P. Athron et al., BubbleProfiler: finding the field profile and action for cosmological phase transitions, arXiv:1901.03714 [INSPIRE].
  142. [142]
    A. Masoumi, K.D. Olum and B. Shlaer, Efficient numerical solution to vacuum decay with many fields, JCAP 01 (2017) 051 [arXiv:1610.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  143. [143]
    M.L. Piscopo, M. Spannowsky and P. Waite, Solving differential equations with neural networks: applied to the calculation of cosmological phase transitions, arXiv:1902.05563 [INSPIRE].
  144. [144]
    J. Ellis, M. Lewicki and J.M. No, On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal, submitted to JCAP, arXiv:1809.08242 [INSPIRE].
  145. [145]
    D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case, arXiv:1806.07396 [INSPIRE].
  146. [146]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].
  147. [147]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  148. [148]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].
  150. [150]
    CMS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state in pp collisions at \( \sqrt{s}= 13 \) TeV, Phys. Lett. B 788 (2019) 7 [arXiv:1806.00408] [INSPIRE].
  151. [151]
    CMS collaboration, Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 778 (2018) 101 [arXiv:1707.02909] [INSPIRE].
  152. [152]
    CMS collaboration, Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 781 (2018) 244 [arXiv:1710.04960] [INSPIRE].
  153. [153]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV, JHEP 08 (2018) 152 [arXiv:1806.03548] [INSPIRE].
  154. [154]
    CMS collaboration, Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2019) 040 [arXiv:1808.01473] [INSPIRE].
  155. [155]
    CMS collaboration, Search for nonresonant Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state at \( \sqrt{s}=13 \) TeV, JHEP, arXiv:1810.11854 [INSPIRE].
  156. [156]
    CMS collaboration, Search for resonant and nonresonant Higgs boson pair production in the \( b\overline{b}\mathit{\ell \nu \ell \nu } \) final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 054 [arXiv:1708.04188] [INSPIRE].
  157. [157]
    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to Phys. Rev. Lett., arXiv:1811.09689 [INSPIRE].
  158. [158]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
  159. [159]
    ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) decay channel in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [Erratum ibid. 122 (2019) 089901] [arXiv:1808.00336] [INSPIRE].
  160. [160]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
  161. [161]
    ATLAS collaboration, Search for Higgs boson pair production in the W W (∗) W W (∗) decay channel using ATLAS data recorded at \( \sqrt{s}=13 \) TeV, submitted to JHEP, arXiv:1811.11028 [INSPIRE].
  162. [162]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}W{W}^{\ast } \) decay mode at \( \sqrt{s}=13 \) TeV with the ATLAS detector,arXiv:1811.04671[INSPIRE].
  163. [163]
    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at 13 TeV with the ATLAS experiment, ATLAS-CONF-2018-043 (2018).Google Scholar
  164. [164]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  165. [165]
    A. Adhikary et al., Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].ADSCrossRefGoogle Scholar
  166. [166]
    S. Banerjee et al., hh + jet production at 100 TeV, Eur. Phys. J. C 78 (2018) 322 [arXiv:1802.01607] [INSPIRE].
  167. [167]
    S. Borowka et al., Probing the scalar potential via double Higgs boson production at hadron colliders, submitted to JHEP, arXiv:1811.12366 [INSPIRE].
  168. [168]
    W. Kilian et al., Multi-Higgs production and unitarity in vector-boson fusion at future hadron colliders, arXiv:1808.05534 [INSPIRE].
  169. [169]
    D. Jurčiukonis and L. Lavoura, The three- and four-Higgs couplings in the general two-Higgs-doublet model, JHEP 12 (2018) 004 [arXiv:1807.04244] [INSPIRE].ADSCrossRefGoogle Scholar
  170. [170]
    F. Maltoni, D. Pagani and X. Zhao, Constraining the Higgs self-couplings at e + e colliders, JHEP 07 (2018) 087 [arXiv:1802.07616] [INSPIRE].
  171. [171]
    C.-Y. Chen et al., Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D 93 (2016) 013007 [arXiv:1510.04013] [INSPIRE].
  172. [172]
    ATLAS collaboration, Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052008 [arXiv:1808.02380] [INSPIRE].
  173. [173]
    S. Kanemura and K. Yagyu, Unitarity bound in the most general two Higgs doublet model, Phys. Lett. B 751 (2015) 289 [arXiv:1509.06060] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Alexandre Alves
    • 1
  • Tathagata Ghosh
    • 2
  • Huai-Ke Guo
    • 3
    Email author
  • Kuver Sinha
    • 3
  • Daniel Vagie
    • 3
  1. 1.Departamento de FísicaUniversidade Federal de São PauloDiademaBrazil
  2. 2.Department of Physics & AstronomyUniversity of HawaiiHonoluluU.S.A.
  3. 3.Department of Physics and AstronomyUniversity of OklahomaNormanU.S.A.

Personalised recommendations