Gluing together modular flows with free fermions

  • Gabriel WongEmail author
Open Access
Regular Article - Theoretical Physics


We revisit the calculation of multi-interval modular Hamiltonians for free fermions using a Euclidean path integral approach. We show how the multi-interval modular flow is obtained by gluing together the single interval modular flows. Using this relation, we obtain an exact expression for the multi-interval modular Hamiltonian and entanglement entropy in agreement with existing results. An essential ingredient in our derivation is the introduction of the modular action. This determines the non-local field theory describing the free fermion reduced density matrix, and makes manifest it’s non-local conformal symmetry and U(1) Kacs-Moody symmetry.


Boundary Quantum Field Theory Conformal and W Symmetry Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.-H. Rehren and G. Tedesco, Multilocal fermionization, Lett. Math. Phys. 103 (2013) 19 [arXiv:1205.0324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Kabat and G. Lifschytz, Local bulk physics from intersecting modular Hamiltonians, JHEP 06 (2017) 120 [arXiv:1703.06523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Wong, A note on entanglement edge modes in Chern Simons theory, JHEP 08 (2018) 020 [arXiv:1706.04666] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A general proof of the quantum null energy condition, arXiv:1706.09432 [INSPIRE].
  6. [6]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitian scalar field, J. Math. Phys. 16 (1975) 985 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    I. Klich, D. Vaman and G. Wong, Entanglement Hamiltonians for chiral fermions with zero modes, Phys. Rev. Lett. 119 (2017) 120401 [arXiv:1501.00482] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Cardy and E. Tonni, Entanglement Hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].
  13. [13]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations