Advertisement

LHC SUSY and WIMP dark matter searches confront the string theory landscape

  • Howard BaerEmail author
  • Vernon Barger
  • Shadman Salam
  • Hasan Serce
  • Kuver Sinha
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

The string theory landscape of vacua solutions provides physicists with some understanding as to the magnitude of the cosmological constant. Similar reasoning can be applied to the magnitude of the soft SUSY breaking terms in supersymmetric models of particle physics: there appears to be a statistical draw towards large soft terms which is tempered by the anthropic requirement of the weak scale lying not too far from ∼ 100 GeV. For a mild statistical draw of m soft n with n = 1 (as expected from SUSY breaking due to a single F term) then the light Higgs mass is preferred at ∼ 125 GeV while sparticles are all pulled beyond LHC bounds. We confront a variety of LHC and WIMP dark matter search limits with the statistical expectations from a fertile patch of string theory landscape. The end result is that LHC and WIMP dark matter detectors see exactly that which is expected from the landscape: a Standard Model-like Higgs boson of mass 125 GeV but as yet no sign of sparticles or WIMP dark matter. SUSY from the n = 1 landscape is most likely to emerge at LHC in the soft opposite-sign dilepton plus jet plus MET channel. Multi-ton noble liquid WIMP detectors should be able to completely explore the n = 1 landscape parameter space.

Keywords

Supersymmetry Phenomenology Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  3. [3]
    R. Bousso and J. Polchinski, The string theory landscape, Sci. Am. 291 (2004) 60.CrossRefGoogle Scholar
  4. [4]
    S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M.R. Douglas, The Statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Weinberg, Living in the multiverse, in Universe or multiverse?, B. Carr ed., pp. 29-42 (2005), hep-th/0511037 [INSPIRE].
  9. [9]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
  10. [10]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking, Phys. Rev. Lett. 80 (1998) 1822 [hep-ph/9801253] [INSPIRE].
  11. [11]
    M.R. Douglas, Basic results in vacuum statistics, Comptes Rendus Physique 5 (2004) 965 [hep-th/0409207] [INSPIRE].
  12. [12]
    L. Susskind, Supersymmetry breaking in the anthropic landscape, hep-th/0405189 [INSPIRE].
  13. [13]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [INSPIRE].
  15. [15]
    M.R. Douglas, The string landscape and low-energy supersymmetry, Les Houches Lect. Notes 97 (2015) 315.Google Scholar
  16. [16]
    M. Dine, E. Gorbatov and S.D. Thomas, Low energy supersymmetry from the landscape, JHEP 08 (2008) 098 [hep-th/0407043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Dine, Supersymmetry, naturalness and the landscape, in Themes in Unification. Proceedings: 10th International Symposium on particles, strings and cosmology, (PASCOS 2004), Pran Nath Festschrift, Part II: Boston, U.S.A., August 18-19, 2004, pp. 249-263 (2004) [ https://doi.org/10.1142/9789812701756_0093] [hep-th/0410201] [INSPIRE].
  18. [18]
    F. Denef, M.R. Douglas and S. Kachru, Physics of String Flux Compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Kumar, A Review of distributions on the string landscape, Int. J. Mod. Phys. A 21 (2006) 3441 [hep-th/0601053] [INSPIRE].
  20. [20]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Baer, V. Barger, H. Serce and K. Sinha, Higgs and superparticle mass predictions from the landscape, JHEP 03 (2018) 002 [arXiv:1712.01399] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].
  24. [24]
    H. Baer, M. Brhlik and D. Castano, Constraints on the minimal supergravity model from nonstandard vacua, Phys. Rev. D 54 (1996) 6944 [hep-ph/9607465] [INSPIRE].
  25. [25]
    G.F. Giudice and R. Rattazzi, Living Dangerously with Low-Energy Supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].
  26. [26]
    H. Baer, V. Barger, M. Savoy and H. Serce, The Higgs mass and natural supersymmetric spectrum from the landscape, Phys. Lett. B 758 (2016) 113 [arXiv:1602.07697] [INSPIRE].
  27. [27]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].
  29. [29]
    H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge, U.K. (2006) [INSPIRE].
  30. [30]
    H. Baer, V. Barger and D. Sengupta, Gravity safe, electroweak natural axionic solution to strong CP and SUSY μ problems, Phys. Lett. B 790 (2019) 58 [arXiv:1810.03713] [INSPIRE].
  31. [31]
    G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].
  32. [32]
    H. Baer, C.-H. Chen, R.B. Munroe, F.E. Paige and X. Tata, Multichannel search for minimal supergravity at \( p\overline{p} \) and e + e colliders, Phys. Rev. D 51 (1995) 1046 [hep-ph/9408265] [INSPIRE].
  33. [33]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].
  34. [34]
    G.W. Anderson and D.J. Castano, Challenging weak scale supersymmetry at colliders, Phys. Rev. D 53 (1996) 2403 [hep-ph/9509212] [INSPIRE].
  35. [35]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].
  36. [36]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
  37. [37]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
  38. [38]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019 [arXiv:1404.2277] [INSPIRE].
  40. [40]
    D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].
  41. [41]
    M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan beta solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].
  42. [42]
    P. Nath and R.L. Arnowitt, Nonuniversal soft SUSY breaking and dark matter, Phys. Rev. D 56 (1997) 2820 [hep-ph/9701301] [INSPIRE].
  43. [43]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].
  44. [44]
    J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].
  45. [45]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].
  46. [46]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \overline{p}p \) and e + e reactions, hep-ph/0312045 [INSPIRE].
  47. [47]
    H. Baer, V. Barger, J.S. Gainer, H. Serce and X. Tata, Reach of the high-energy LHC for gluinos and top squarks in SUSY models with light Higgsinos, Phys. Rev. D 96 (2017) 115008 [arXiv:1708.09054] [INSPIRE].
  48. [48]
    H. Baer, V. Barger, J.S. Gainer, D. Sengupta, H. Serce and X. Tata, LHC luminosity and energy upgrades confront natural supersymmetry models, Phys. Rev. D 98 (2018) 075010 [arXiv:1808.04844] [INSPIRE].
  49. [49]
    H.P. Nilles and P.K.S. Vaudrevange, Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics, Adv. Ser. Direct. High Energy Phys. 22 (2015) 49 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Local grand unification, in CP Violation and the Flavour Puzzle: Symposium in Honour of Gustavo C. Branco. GustavoFest 2005, Lisbon, Portugal, July 2005, pp. 143-156, 2005, hep-ph/0512326 [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-041.
  52. [52]
    CMS collaboration, Search for top squark pair production in pp collisions at \( \sqrt{s}=13 \) TeV using single lepton events, JHEP 10 (2017) 019 [arXiv:1706.04402] [INSPIRE].
  53. [53]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].
  55. [55]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  56. [56]
    H. Baer et al., Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY, Eur. Phys. J. C 77 (2017) 499 [arXiv:1612.00795] [INSPIRE].
  57. [57]
    H. Baer, V. Barger, M. Padeffke-Kirkland and X. Tata, Naturalness implies intra-generational degeneracy for decoupled squarks and sleptons, Phys. Rev. D 89 (2014) 037701 [arXiv:1311.4587] [INSPIRE].
  58. [58]
    H. Baer et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    H. Baer et al., Radiatively-driven natural supersymmetry at the LHC, JHEP 12 (2013) 013 [Erratum ibid. 06 (2015) 053] [arXiv:1310.4858] [INSPIRE].
  60. [60]
    H. Baer, V. Barger, J.S. Gainer, M. Savoy, D. Sengupta and X. Tata, Aspects of the same-sign diboson signature from wino pair production with light higgsinos at the high luminosity LHC, Phys. Rev. D 97 (2018) 035012 [arXiv:1710.09103] [INSPIRE].
  61. [61]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].
  62. [62]
    H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].
  63. [63]
    C. Han, D. Kim, S. Munir and M. Park, Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC, JHEP 04 (2015) 132 [arXiv:1502.03734] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
  65. [65]
    X. Cid Vidal et al., Beyond the Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1812.07831 [INSPIRE].
  66. [66]
    H. Baer, M. Bisset, C. Kao and X. Tata, Detecting Higgs boson decays to neutralinos at hadron supercolliders, Phys. Rev. D 50 (1994) 316 [hep-ph/9402265] [INSPIRE].
  67. [67]
    K.J. Bae, H. Baer, N. Nagata and H. Serce, Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness, Phys. Rev. D 92 (2015) 035006 [arXiv:1505.03541] [INSPIRE].
  68. [68]
    H. Baer, V. Barger and P. Huang, Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider, JHEP 11 (2011) 031 [arXiv:1107.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Allahverdi, B. Dutta and K. Sinha, Non-thermal Higgsino Dark Matter: Cosmological Motivations and Implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].
  70. [70]
    H. Baer, V. Barger and D. Mickelson, Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak naturalness, Phys. Lett. B 726 (2013) 330 [arXiv:1303.3816] [INSPIRE].
  71. [71]
    K.J. Bae, H. Baer, V. Barger and D. Sengupta, Revisiting the SUSY μ problem and its solutions in the LHC era, arXiv:1902.10748 [INSPIRE].
  72. [72]
    H. Baer, V. Barger, D. Sengupta and X. Tata, Is natural higgsino-only dark matter excluded?, Eur. Phys. J. C 78 (2018) 838 [arXiv:1803.11210] [INSPIRE].
  73. [73]
    K.J. Bae, H. Baer, A. Lessa and H. Serce, Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model, JCAP 10 (2014) 082 [arXiv:1406.4138] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    XENON100 collaboration, XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].
  75. [75]
    LUX-ZEPLIN collaboration, Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ) Dark Matter Experiment, arXiv:1802.06039 [INSPIRE].
  76. [76]
    G. Fiorillo, DarkSide-20k and the future Liquid Argon Dark Matter program, talk at UCLA DM Conference, Los Angeles, February 23, 2018 [https://indico.cern.ch/event/653314/contributions/2825769/attachments/1606239/2548583/Fiorillo-DM2018.pdf ].
  77. [77]
    C. Galbiati, Direct Dark Matter Detection with Noble Gases, talk at UCLA DM Conference, Los Angeles, February 21, 2018 [https://indico.cern.ch/event/653314/contributions/2681549/attachments/1604699/2545488/Galbiati_UCLA_DM_2018_Feb_21_2018.pdf].
  78. [78]
    PICO collaboration, Dark Matter Search Results from the PICO-60 C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].
  79. [79]
    IceCube collaboration, Search for annihilating dark matter in the Sun with 3 years of IceCube data, Eur. Phys. J. C 77 (2017) 146 [Erratum ibid. C 79 (2019) 214] [arXiv:1612.05949] [INSPIRE].
  80. [80]
    MAGIC and Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  81. [81]
    K.J. Bae, H. Baer and H. Serce, Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?, JCAP 06 (2017) 024 [arXiv:1705.01134] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Howard Baer
    • 1
    Email author
  • Vernon Barger
    • 2
  • Shadman Salam
    • 1
  • Hasan Serce
    • 2
  • Kuver Sinha
    • 1
  1. 1.Homer L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanU.S.A.
  2. 2.Department of PhysicsUniversity of WisconsinMadisonU.S.A.

Personalised recommendations