Advertisement

Novel astrophysical probes of light millicharged fermions through Schwinger pair production

  • Mrunal Korwar
  • Arun M. ThalapillilEmail author
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

The extreme properties of neutron stars provide unique opportunities to put constraints on new particles and interactions. In this paper, we point out a few interesting ideas that place constraints on light millicharged fermions, with masses below around an eV, from neutron star astrophysics. The model-independent bounds are obtained leveraging the fact that light millicharged fermions may be pair produced copiously via non-perturbative processes in the extreme electromagnetic environments of a neutron star, like a Magnetar. The limits are derived based on the requirement that conventional Magnetar physics not be catastrophically affected by this non-perturbative production. It will be seen that Magnetar energetics, magnetic field evolution and spin-down rates may all be influenced to various degrees by the presence of the millicharged particles.

Keywords

Beyond Standard Model Precision QED 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Goldberg and L.J. Hall, A New Candidate for Dark Matter, Phys. Lett. B 174 (1986) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K. Cheung and T.-C. Yuan, Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03 (2007) 120 [hep-ph/0701107] [INSPIRE].
  3. [3]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].
  4. [4]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. 166B (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].
  6. [6]
    S.A. Abel and B.W. Schofield, Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [INSPIRE].
  8. [8]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    PVLAS collaboration, Experimental observation of optical rotation generated in vacuum by a magnetic field, Phys. Rev. Lett. 96 (2006) 110406 [Erratum ibid. 99 (2007) 129901] [hep-ex/0507107] [INSPIRE].
  11. [11]
    PAMELA collaboration, An anomalous positron abundance in cosmic rays with energies 1.5100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
  12. [12]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300800 GeV, Nature 456 (2008) 362 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Barkana, Possible interaction between baryons and dark-matter particles revealed by the first stars, Nature 555 (2018) 71 [arXiv:1803.06698] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.I. Collar et al., New light, weakly-coupled particles, in Fundamental Physics at the Intensity Frontier, Rockville, MD, U.S.A., November 30–December 2, 2011 [INSPIRE].
  17. [17]
    A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys. Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].ADSGoogle Scholar
  18. [18]
    O. Gould and A. Rajantie, Magnetic monopole mass bounds from heavy ion collisions and neutron stars, Phys. Rev. Lett. 119 (2017) 241601 [arXiv:1705.07052] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Gies, J. Jaeckel and A. Ringwald, Accelerator Cavities as a Probe of Millicharged Particles, Europhys. Lett. 76 (2006) 794 [hep-ph/0608238] [INSPIRE].
  20. [20]
    S. Davidson and M.E. Peskin, Astrophysical bounds on millicharged particles in models with a paraphoton, Phys. Rev. D 49 (1994) 2114 [hep-ph/9310288] [INSPIRE].
  21. [21]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  22. [22]
    H. Vogel and J. Redondo, Dark Radiation constraints on minicharged particles in models with a hidden photon, JCAP 02 (2014) 029 [arXiv:1311.2600] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev. D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].ADSzbMATHGoogle Scholar
  24. [24]
    E. Masso and J. Redondo, Compatibility of CAST search with axion-like interpretation of PVLAS results, Phys. Rev. Lett. 97 (2006) 151802 [hep-ph/0606163] [INSPIRE].
  25. [25]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Illuminating the Hidden Sector of String Theory by Shining Light through a Magnetic Field, Phys. Lett. B 666 (2008) 66 [hep-ph/0608248] [INSPIRE].
  26. [26]
    R. Foot and A. Kobakhidze, A Simple explanation of the PVLAS anomaly in spontaneously broken mirror models, Phys. Lett. B 650 (2007) 46 [hep-ph/0702125] [INSPIRE].
  27. [27]
    A. Melchiorri, A. Polosa and A. Strumia, New bounds on millicharged particles from cosmology, Phys. Lett. B 650 (2007) 416 [hep-ph/0703144] [INSPIRE].
  28. [28]
    W. Baade and F. Zwicky, On Super-novae, Proc. Nat. Acad. Sci. 20 (1934) 254.ADSCrossRefGoogle Scholar
  29. [29]
    W. Baade and F. Zwicky, Cosmic Rays from Super-novae, Proc. Nat. Acad. Sci. 20 (1934) 259.ADSCrossRefGoogle Scholar
  30. [30]
    W. Becker ed., Neutron Stars and Pulsars, Springer, Berlin, Germany (2009).Google Scholar
  31. [31]
    S. Mereghetti, The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars, Astron. Astrophys. Rev. 15 (2008) 225 [arXiv:0804.0250] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron starsimplications for gamma-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C. Thompson and R.C. Duncan, Neutron star dynamos and the origins of pulsar magnetism, Astrophys. J. 408 (1993) 194 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Thompson and R.C. Duncan, The Soft gamma repeaters as very strongly magnetized neutron stars1. Radiative mechanism for outbursts, Mon. Not. Roy. Astron. Soc. 275 (1995) 255 [INSPIRE].
  35. [35]
    D.R. Lorimer and M. Kramer, Handbook of Pulsar Astronomy, Cambridge University Press, Cambridge, U.K. (2004).Google Scholar
  36. [36]
    P. Goldreich and W.H. Julian, Pulsar electrodynamics, Astrophys. J. 157 (1969) 869 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A.K. Harding and A.G. Muslimov, Particle acceleration zones above pulsar polar caps: electron and positron pair formation fronts, Astrophys. J. 508 (1998) 328 [astro-ph/9805132] [INSPIRE].
  38. [38]
    J. Dyks and B. Rudak, Approximate expressions for polar gap electric field of pulsars, Astron. Astrophys. 362 (2000) 1004 [astro-ph/0006256] [INSPIRE].
  39. [39]
    M.A. Ruderman and P.G. Sutherland, Theory of pulsars: Polar caps, sparks and coherent microwave radiation, Astrophys. J. 196 (1975) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.A. Hibschman and J. Arons, Pair multiplicities and pulsar death, Astrophys. J. 554 (2001) 624 [astro-ph/0102175] [INSPIRE].
  41. [41]
    A.I. Nikishov, Barrier scattering in field theory removal of klein paradox, Nucl. Phys. B 21 (1970) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S.P. Kim and D.N. Page, Schwinger pair production in electric and magnetic fields, Phys. Rev. D 73 (2006) 065020 [hep-th/0301132] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in From fields to strings: Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set), M. Shifman, A. Vainshtein and J. Wheater eds., pp. 445–522 (2004) [ https://doi.org/10.1142/9789812775344_0014] [hep-th/0406216] [INSPIRE].
  44. [44]
    R. Ruffini, G. Vereshchagin and S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept. 487 (2010) 1 [arXiv:0910.0974] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Korwar and A.M. Thalapillil, Finite temperature Schwinger pair production in coexistent electric and magnetic fields, Phys. Rev. D 98 (2018) 076016 [arXiv:1808.01295] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S.A. Olausen and V.M. Kaspi, The McGill Magnetar Catalog, Astrophys. J. Suppl. 212 (2014) 6 [arXiv:1309.4167] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V.M. Kaspi and A. Beloborodov, Magnetars, Ann. Rev. Astron. Astrophys. 55 (2017) 261 [arXiv:1703.00068] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I.K. Affleck, O. Alvarez and N.S. Manton, Pair Production at Strong Coupling in Weak External Fields, Nucl. Phys. B 197 (1982) 509 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I.K. Affleck and N.S. Manton, Monopole Pair Production in a Magnetic Field, Nucl. Phys. B 194 (1982) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V.I. Ritus, Effective Lagrange function of intense electromagnetic field in QED, in Frontier tests of QED and physics of the vacuum. Proceedings, Workshop, Sandansky, Bulgaria, June 9–15, 1998, pp. 11–28 (1998) [hep-th/9812124] [INSPIRE].
  52. [52]
    X. Li and M.B. Voloshin, Electric discharge in vacuum by minicharged particles, Mod. Phys. Lett. A 29 (2014) 1450054 [arXiv:1401.0049] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, Wiley (1983) [INSPIRE].
  54. [54]
    P. Goldreich and A. Reisenegger, Magnetic field decay in isolated neutron stars, Astrophys. J. 395 (1992) 250.ADSCrossRefGoogle Scholar
  55. [55]
    K. Glampedakis, D.I. Jones and L. Samuelsson, Ambipolar diffusion in superfluid neutron stars, Mon. Not. Roy. Astron. Soc. 413 (2011) 2021 [arXiv:1010.1153] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Turolla, S. Zane and A. Watts, Magnetars: the physics behind observations. A review, Rept. Prog. Phys. 78 (2015) 116901 [arXiv:1507.02924] [INSPIRE].
  57. [57]
    D.N. Aguilera, J.A. Pons and J.A. Miralles, 2D Cooling of Magnetized Neutron Stars, Astron. Astrophys. 486 (2008) 255 [arXiv:0710.0854] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Viganò, N. Rea, J.A. Pons, R. Perna, D.N. Aguilera and J.A. Miralles, Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models, Mon. Not. Roy. Astron. Soc. 434 (2013) 123 [arXiv:1306.2156] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.A. Pons and U. Geppert, Magnetic field dissipation in neutron star crusts: From magnetars to isolated neutron stars, Astron. Astrophys. 470 (2007) 303 [astro-ph/0703267] [INSPIRE].
  60. [60]
    F. Pacini, Energy Emission from a Neutron Star, Nature 216 (1967) 567.ADSCrossRefGoogle Scholar
  61. [61]
    J.P. Ostriker and J.E. Gunn, Magnetic Dipole Radiation from Pulsars, Nature 221 (1969) 454.ADSCrossRefGoogle Scholar
  62. [62]
    J.P. Ostriker and J.E. Gunn, On the nature of pulsars. 1. Theory, Astrophys. J. 157 (1969) 1395 [INSPIRE].
  63. [63]
    A.R. Brown, Schwinger pair production at nonzero temperatures or in compact directions, Phys. Rev. D 98 (2018) 036008 [arXiv:1512.05716] [INSPIRE].ADSGoogle Scholar
  64. [64]
    L. Medina and M.C. Ogilvie, Schwinger Pair Production at Finite Temperature, Phys. Rev. D 95 (2017) 056006 [arXiv:1511.09459] [INSPIRE].ADSGoogle Scholar
  65. [65]
    O. Gould and A. Rajantie, Thermal Schwinger pair production at arbitrary coupling, Phys. Rev. D 96 (2017) 076002 [arXiv:1704.04801] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia
  2. 2.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations