Advertisement

Recursion relations for anomalous dimensions in the 6d (2, 0) theory

  • Theresa Abl
  • Paul Heslop
  • Arthur E. LipsteinEmail author
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We derive recursion relations for the anomalous dimensions of double-trace operators occurring in the conformal block expansion of four-point stress tensor correlators in the 6d (2, 0) theory, which encode higher-derivative corrections to supergravity in AdS7 × S4 arising from M-theory. As a warm-up, we derive analogous recursion relations for four-point functions of scalar operators in a toy non-supersymmetric 6d conformal field theory.

Keywords

1/N Expansion Conformal Field Theory M-Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [Erratum ibid. B 53 (1973) 643] [INSPIRE].
  3. [3]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [Sov. Phys. JETP 39 (1974) 9] [INSPIRE].
  4. [4]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    P. Heslop and A.E. Lipstein, M-theory beyond the supergravity approximation, JHEP 02 (2018) 004 [arXiv:1712.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large N, JHEP 06 (2015) 074 [arXiv:1410.4717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    V. Gonçalves, Four point function of \( \mathcal{N} \) = 4 stress-tensor multiplet at strong coupling, JHEP 04 (2015) 150 [arXiv:1411.1675] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.M. Chester and E. Perlmutter, M-theory reconstruction from (2, 0) CFT and the chiral algebra conjecture, JHEP 08 (2018) 116 [arXiv:1805.00892] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S.M. Chester, AdS 4 /CFT 3 for unprotected operators, JHEP 07 (2018) 030 [arXiv:1803.01379] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.M. Chester, S.S. Pufu and X. Yin, The M-theory S-matrix from ABJM: beyond 11D supergravity, JHEP 08 (2018) 115 [arXiv:1804.00949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  22. [22]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    F. Bastianelli and R. Zucchini, Three point functions of chiral primary operators in d = 3, N = 8 and d = 6, N = (2, 0) SCFT at large N, Phys. Lett. B 467 (1999) 61 [hep-th/9907047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Arutyunov and E. Sokatchev, Implications of superconformal symmetry for interacting (2, 0) tensor multiplets, Nucl. Phys. B 635 (2002) 3 [hep-th/0201145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P.J. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056 [hep-th/0405245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    L. Rastelli and X. Zhou, Holographic four-point functions in the (2, 0) theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01 (2006) 093 [hep-th/0510027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    X. Zhou, On superconformal four-point mellin amplitudes in dimension d > 2, JHEP 08 (2018) 187 [arXiv:1712.02800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R. Doobary and P. Heslop, Superconformal partial waves in Grassmannian field theories, JHEP 12 (2015) 159 [arXiv:1508.03611] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L.F. Alday and A. Bissi, Loop corrections to supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum gravity from conformal field theory, JHEP 01 (2018) 035 [arXiv:1706.02822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Loop corrections for Kaluza-Klein AdS amplitudes, JHEP 05 (2018) 056 [arXiv:1711.03903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    F. Aprile, J. Drummond, P. Heslop and H. Paul, Double-trace spectrum of N = 4 supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. D 98 (2018) 126008 [arXiv:1802.06889] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdS 5 × S 5 supergravity: hidden ten-dimensional conformal symmetry, JHEP 01 (2019) 196 [arXiv:1809.09173] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    L.F. Alday, A. Bissi and E. Perlmutter, Genus-one string amplitudes from conformal field theory, arXiv:1809.10670 [INSPIRE].
  41. [41]
    L.F. Alday, On genus-one string amplitudes on AdS 5 × S 5, arXiv:1812.11783 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations