Advertisement

Decay of I-ball/oscillon in classical field theory

  • Masahiro Ibe
  • Masahiro Kawasaki
  • Wakutaka NakanoEmail author
  • Eisuke Sonomoto
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

I-balls/oscillons are long-lived and spatially localized solutions of real scalar fields. They are produced in various contexts of the early universe in, such as, the inflaton evolution and the axion evolution. However, their decay process has long been unclear. In this paper, we derive an analytic formula of the decay rate of the I-balls/oscillons within the classical field theory. In our approach, we calculate the Poynting vector of the perturbation around the I-ball/oscillon profile by solving a relativistic field equation, with which the decay rate of the I-ball/oscillon is obtained. We also perform a classical lattice simulation and confirm the validity of our analytical formula of the decay rate numerically.

Keywords

Global Symmetries Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSzbMATHGoogle Scholar
  2. [2]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Sato, First order phase transition of a vacuum and expansion of the universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I.L. Bogolyubsky and V.G. Makhankov, Lifetime of pulsating solitons in some classical models, Pisma Zh. Eksp. Teor. Fiz. 24 (1976) 15 [INSPIRE].Google Scholar
  6. [6]
    M. Gleiser, Pseudostable bubbles, Phys. Rev. D 49 (1994) 2978 [hep-ph/9308279] [INSPIRE].
  7. [7]
    E.J. Copeland, M. Gleiser and H.R. Muller, Oscillons: resonant configurations during bubble collapse, Phys. Rev. D 52 (1995) 1920 [hep-ph/9503217] [INSPIRE].
  8. [8]
    S. Kasuya, M. Kawasaki and F. Takahashi, I-balls, Phys. Lett. B 559 (2003) 99 [hep-ph/0209358] [INSPIRE].
  9. [9]
    M. Kawasaki, F. Takahashi and N. Takeda, Adiabatic invariance of oscillons/I-balls, Phys. Rev. D 92 (2015) 105024 [arXiv:1508.01028] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Ya. B. Zeldovich, I. Yu. Kobzarev and L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [Sov. Phys. JETP 40 (1974) 1] [INSPIRE].
  11. [11]
    G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
  12. [12]
    A.M. Polyakov, Particle spectrum in the quantum field theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].
  13. [13]
    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSzbMATHGoogle Scholar
  14. [14]
    S.R. Coleman, Q balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].
  15. [15]
    A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [INSPIRE].
  16. [16]
    K. Enqvist and J. McDonald, Q balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998) 309 [hep-ph/9711514] [INSPIRE].
  17. [17]
    K. Enqvist and J. McDonald, B-ball baryogenesis and the baryon to dark matter ratio, Nucl. Phys. B 538 (1999) 321 [hep-ph/9803380] [INSPIRE].
  18. [18]
    S. Kasuya and M. Kawasaki, Q ball formation through Affleck-Dine mechanism, Phys. Rev. D 61 (2000) 041301 [hep-ph/9909509] [INSPIRE].
  19. [19]
    S. Kasuya and M. Kawasaki, Q ball formation in the gravity mediated SUSY breaking scenario, Phys. Rev. D 62 (2000) 023512 [hep-ph/0002285] [INSPIRE].
  20. [20]
    K. Mukaida and M. Takimoto, Correspondence of I- and Q-balls as non-relativistic condensates, JCAP 08 (2014) 051 [arXiv:1405.3233] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. McDonald, Inflaton condensate fragmentation in hybrid inflation models, Phys. Rev. D 66 (2002) 043525 [hep-ph/0105235] [INSPIRE].
  22. [22]
    M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, Oscillons after inflation, Phys. Rev. Lett. 108 (2012) 241302 [arXiv:1106.3335] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Takeda and Y. Watanabe, No quasistable scalaron lump forms after R 2 inflation, Phys. Rev. D 90 (2014) 023519 [arXiv:1405.3830] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K.D. Lozanov and M.A. Amin, Equation of state and duration to radiation domination after inflation, Phys. Rev. Lett. 119 (2017) 061301 [arXiv:1608.01213] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Hasegawa and J.-P. Hong, Inflaton fragmentation in E-models of cosmological α-attractors, Phys. Rev. D 97 (2018) 083514 [arXiv:1710.07487] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and F. Quevedo, Oscillons from string moduli, JHEP 01 (2018) 083 [arXiv:1708.08922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J.-P. Hong, M. Kawasaki and M. Yamazaki, Oscillons from pure natural inflation, Phys. Rev. D 98 (2018) 043531 [arXiv:1711.10496] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.-Y. Zhou, E.J. Copeland, R. Easther, H. Finkel, Z.-G. Mou and P.M. Saffin, Gravitational waves from oscillon preheating, JHEP 10 (2013) 026 [arXiv:1304.6094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Antusch, F. Cefala and S. Orani, Gravitational waves from oscillons after inflation, Phys. Rev. Lett. 118 (2017) 011303 [Erratum ibid. 120 (2018) 219901] [arXiv:1607.01314] [INSPIRE].
  30. [30]
    E.W. Kolb and I.I. Tkachev, Axion miniclusters and Bose stars, Phys. Rev. Lett. 71 (1993) 3051 [hep-ph/9303313] [INSPIRE].
  31. [31]
    E.W. Kolb and I.I. Tkachev, Nonlinear axion dynamics and formation of cosmological pseudosolitons, Phys. Rev. D 49 (1994) 5040 [astro-ph/9311037] [INSPIRE].
  32. [32]
    A. Vaquero, J. Redondo and J. Stadler, Early seeds of of axion miniclusters, arXiv:1809.09241 [INSPIRE].
  33. [33]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  39. [39]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].
  41. [41]
    G. Fodor, P. Forgacs, P. Grandclement and I. Racz, Oscillons and quasi-breathers in the ϕ 4 Klein-Gordon model, Phys. Rev. D 74 (2006) 124003 [hep-th/0609023] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Fodor, P. Forgacs, Z. Horvath and M. Mezei, Computation of the radiation amplitude of oscillons, Phys. Rev. D 79 (2009) 065002 [arXiv:0812.1919] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Gleiser and D. Sicilia, Analytical characterization of oscillon energy and lifetime, Phys. Rev. Lett. 101 (2008) 011602 [arXiv:0804.0791] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Fodor, P. Forgacs, Z. Horvath and M. Mezei, Radiation of scalar oscillons in 2 and 3 dimensions, Phys. Lett. B 674 (2009) 319 [arXiv:0903.0953] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Gleiser and D. Sicilia, A general theory of oscillon dynamics, Phys. Rev. D 80 (2009) 125037 [arXiv:0910.5922] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.P. Hertzberg, Quantum radiation of oscillons, Phys. Rev. D 82 (2010) 045022 [arXiv:1003.3459] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P.M. Saffin, P. Tognarelli and A. Tranberg, Oscillon lifetime in the presence of quantum fluctuations, JHEP 08 (2014) 125 [arXiv:1401.6168] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Kawasaki and M. Yamada, Decay rates of Gaussian-type-I-balls and Bose-enhancement effects in 3 + 1 dimensions, JCAP 02 (2014) 001 [arXiv:1311.0985] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    K. Mukaida, M. Takimoto and M. Yamada, On longevity of I-ball/oscillon, JHEP 03 (2017) 122 [arXiv:1612.07750] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    J. Eby, K. Mukaida, M. Takimoto, L.C.R. Wijewardhana and M. Yamada, Classical nonrelativistic effective field theory and the role of gravitational interactions, arXiv:1807.09795 [INSPIRE].
  51. [51]
    K. Mukaida, private communication.Google Scholar
  52. [52]
    P. Salmi and M. Hindmarsh, Radiation and relaxation of oscillons, Phys. Rev. D 85 (2012) 085033 [arXiv:1201.1934] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Masahiro Ibe
    • 1
    • 2
  • Masahiro Kawasaki
    • 1
    • 2
  • Wakutaka Nakano
    • 1
    • 2
    Email author
  • Eisuke Sonomoto
    • 1
    • 2
  1. 1.ICRRThe University of TokyoKashiwaJapan
  2. 2.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan

Personalised recommendations