Higher derivative corrections to Kerr black hole thermodynamics

  • Harvey S. ReallEmail author
  • Jorge E. Santos
Open Access
Regular Article - Theoretical Physics


In an effective field theory approach to gravity, the Einstein-Hilbert action is supplemented by higher derivative terms. In the absence of matter, four derivative terms can be eliminated by a field redefinition. We use the Euclidean action to calculate analytically the corrections to thermodynamic quantities of the Kerr solution arising from terms with six or eight derivatives. The eight derivative terms make a non-negative correction to the entropy (at fixed mass and angular momentum) if their coefficients have appropriate signs. The correction from the six derivative terms does not have a definite sign.


Black Holes Effective Field Theories Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An effective formalism for testing extensions to General Relativity with gravitational waves, JHEP 09 (2017) 122 [arXiv:1704.01590] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P.A. Cano and A. Ruipérez, Leading higher-derivative corrections to Kerr geometry, arXiv:1901.01315 [INSPIRE].
  3. [3]
    G. Goon, Heavy Fields and Gravity, JHEP 01 (2017) 045 [Erratum ibid. 1703 (2017) 161] [arXiv:1611.02705] [INSPIRE].
  4. [4]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Lu and M.B. Wise, Black holes with a generalized gravitational action, Phys. Rev. D 47 (1993) R3095 [gr-qc/9301021] [INSPIRE].
  6. [6]
    A. Dobado and A.L. Maroto, Some consequences of the effective low-energy Lagrangian for gravity, Phys. Lett. B 316 (1993) 250 [Erratum ibid. B 321 (1994) 435] [hep-ph/9309221] [INSPIRE].
  7. [7]
    V. Cardoso, M. Kimura, A. Maselli and L. Senatore, Black Holes in an Effective Field Theory Extension of General Relativity, Phys. Rev. Lett. 121 (2018) 251105 [arXiv:1808.08962] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.E. Santos and H.S. Reall, to appear.Google Scholar
  9. [9]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].
  10. [10]
    M.M. Caldarelli and D. Klemm, M theory and stringy corrections to Anti-de Sitter black holes and conformal field theories, Nucl. Phys. B 555 (1999) 157 [hep-th/9903078] [INSPIRE].
  11. [11]
    B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
  12. [12]
    A. Gruzinov and M. Kleban, Causality Constrains Higher Curvature Corrections to Gravity, Class. Quant. Grav. 24 (2007) 3521 [hep-th/0612015] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  14. [14]
    S.W. Hawking, The path-integral approach to quantum gravity, in General Relativity, an Einstein centenary survey, S. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  15. [15]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
  16. [16]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  17. [17]
    L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett. 30 (1973) 71 [Erratum ibid. 30 (1973) 521] [INSPIRE].
  18. [18]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  19. [19]
    J.D. Brown, E.A. Martinez and J.W. York, Jr., Rotating black holes, complex geometry and thermodynamics, Annals N. Y. Acad. Sci. 631 (1991) 225 [INSPIRE].
  20. [20]
    O.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall and J.E. Santos, An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Pawełczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(α 3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].
  22. [22]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C. Cheung, J. Liu and G.N. Remmen, Proof of the Weak Gravity Conjecture from Black Hole Entropy, JHEP 10 (2018) 004 [arXiv:1801.08546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes, Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [INSPIRE].
  25. [25]
    R. Monteiro, M.J. Perry and J.E. Santos, Semiclassical instabilities of Kerr-AdS black holes, Phys. Rev. D 81 (2010) 024001 [arXiv:0905.2334] [INSPIRE].
  26. [26]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.N. Solodukhin, The Conical singularity and quantum corrections to entropy of black hole, Phys. Rev. D 51 (1995) 609 [hep-th/9407001] [INSPIRE].
  28. [28]
    S.N. Solodukhin, OnNongeometriccontribution to the entropy of black hole due to quantum corrections, Phys. Rev. D 51 (1995) 618 [hep-th/9408068] [INSPIRE].
  29. [29]
    D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D 51 (1995) 5352 [hep-th/9412161] [INSPIRE].
  30. [30]
    A. Sen, Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions, JHEP 04 (2013) 156 [arXiv:1205.0971] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations