Probing the scalar potential via double Higgs boson production at hadron colliders

  • Sophia Borowka
  • Claude Duhr
  • Fabio Maltoni
  • Davide Pagani
  • Ambresh Shivaji
  • Xiaoran ZhaoEmail author
Open Access
Regular Article - Theoretical Physics


We present a sensitivity study on the cubic and quartic self couplings in double Higgs production via gluon fusion at hadron colliders. Considering the relevant operators in the Standard Model Effective Field Theory up to dimension eight, we calculate the dominant contributions up to two-loop level, where the first dependence on the quartic interaction appears. Our approach allows to study the independent variations of the two self couplings and to clearly identify the terms necessary to satisfy gauge invariance and to obtain UV-finite results order by order in perturbation theory. We focus on the \( b\overline{b}\gamma \gamma \) signature for simplicity and provide the expected bounds for the cubic and quartic self couplings at the 14 TeV LHC with 3000 fb−1 (HL-LHC) and for a future 100 TeV collider (FCC-100) with 30 ab−1. We find that while the HL-LHC will provide very limited sensitivity on the quartic self coupling, precision measurements of double Higgs production at a FCC-100 will offer the opportunity to set competitive bounds. We show that combining information from double and triple Higgs production leads to significantly improved prospects for the determination of the quartic self coupling.


NLO Computations Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  5. [5]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  6. [6]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, submitted to Eur. Phys. J. (2018) [arXiv:1809.10733] [INSPIRE].
  7. [7]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  8. [8]
    ATLAS collaboration, Cross-section measurements of the Higgs boson decaying to a pair of tau leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-021.
  9. [9]
    CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
  10. [10]
    ATLAS collaboration, Observation of H\( b\overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].
  11. [11]
    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
  12. [12]
    CMS collaboration, Observation of \( t\overline{t}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
  15. [15]
    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at 13 TeV with the ATLAS experiment, ATLAS-CONF-2018-043.
  16. [16]
    ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [arXiv:1808.00336] [INSPIRE].
  17. [17]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
  18. [18]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Yao, Studies of measuring Higgs self-coupling with HH\( b\overline{b}\gamma \gamma \) at the future hadron colliders, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29–August 6, 2013 (2013) [arXiv:1308.6302] [INSPIRE].
  20. [20]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.-T. Lu, J. Chang, K. Cheung and J.S. Lee, An exploratory study of Higgs-boson pair production, JHEP 08 (2015) 133 [arXiv:1505.00957] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the (\( b\overline{b} \))(\( b\overline{b} \)) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    D. Wardrope, E. Jansen, N. Konstantinidis, B. Cooper, R. Falla and N. Norjoharuddeen, Non-resonant Higgs-pair production in the \( b\overline{b} \) \( b\overline{b} \) final state at the LHC, Eur. Phys. J. C 75 (2015) 219 [arXiv:1410.2794] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the \( b\overline{b}b\overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Englert, F. Krauss, M. Spannowsky and J. Thompson, Di-Higgs phenomenology in \( t\overline{t}hh \) : The forgotten channel, Phys. Lett. B 743 (2015) 93 [arXiv:1409.8074] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Liu and H. Zhang, Measuring Di-Higgs Physics via the \( t\overline{t}hh\to t\overline{t}b\overline{b}b\overline{b} \) Channel, arXiv:1410.1855 [INSPIRE].
  30. [30]
    Q.-H. Cao, Y. Liu and B. Yan, Measuring trilinear Higgs coupling in WHH and ZHH productions at the high-luminosity LHC, Phys. Rev. D 95 (2017) 073006 [arXiv:1511.03311] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Bishara, R. Contino and J. Rojo, Higgs pair production in vector-boson fusion at the LHC and beyond, Eur. Phys. J. C 77 (2017) 481 [arXiv:1611.03860] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Q.-H. Cao, G. Li, B. Yan, D.-M. Zhang and H. Zhang, Double Higgs production at the 14 TeV LHC and a 100 TeV pp collider, Phys. Rev. D 96 (2017) 095031 [arXiv:1611.09336] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Huang et al., Resonant di-Higgs boson production in the \( b\overline{b}WW \) channel: Probing the electroweak phase transition at the LHC, Phys. Rev. D 96 (2017) 035007 [arXiv:1701.04442] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Adhikary, S. Banerjee, R.K. Barman, B. Bhattacherjee and S. Niyogi, Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Gonçalves, T. Han, F. Kling, T. Plehn and M. Takeuchi, Higgs boson pair production at future hadron colliders: From kinematics to dynamics, Phys. Rev. D 97 (2018) 113004 [arXiv:1802.04319] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Higgs-boson-pair production \( H\left(\to b\overline{b}\right)\overline{H}\left(\to \gamma \gamma \right) \) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, arXiv:1804.07130 [INSPIRE].
  38. [38]
    E. Arganda, C. Garcia-Garcia and M.J. Herrero, Probing the Higgs self-coupling through double Higgs production in vector boson scattering at the LHC, arXiv:1807.09736 [INSPIRE].
  39. [39]
    S. Homiller and P. Meade, Measurement of the Triple Higgs Coupling at a HE-LHC, arXiv:1811.02572 [INSPIRE].
  40. [40]
    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  41. [41]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, arXiv:1811.05692 [INSPIRE].
  43. [43]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers, JHEP 08 (2017) 088 [arXiv:1703.09252] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Jones and S. Kuttimalai, Parton Shower and NLO-Matching uncertainties in Higgs Boson Pair Production, JHEP 02 (2018) 176 [arXiv:1711.03319] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. de Florian et al., Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
  52. [52]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].
  53. [53]
    C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong and Z. Zhao, Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D 93 (2016) 013007 [arXiv:1510.04013] [INSPIRE].ADSGoogle Scholar
  54. [54]
    W. Kilian, S. Sun, Q.-S. Yan, X. Zhao and Z. Zhao, New Physics in multi-Higgs boson final states, JHEP 06 (2017) 145 [arXiv:1702.03554] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    B. Fuks, J.H. Kim and S.J. Lee, Scrutinizing the Higgs quartic coupling at a future 100 TeV proton-proton collider with taus and b-jets, Phys. Lett. B 771 (2017) 354 [arXiv:1704.04298] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  57. [57]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Spira, Effective Multi-Higgs Couplings to Gluons, JHEP 10 (2016) 026 [arXiv:1607.05548] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D. de Florian and J. Mazzitelli, Two-loop corrections to the triple Higgs boson production cross section, JHEP 02 (2017) 107 [arXiv:1610.05012] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, Phys. Rev. D 90 (2014) 015001 [Erratum ibid. D 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].
  61. [61]
    M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: ggh and hγγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, Eur. Phys. J. C 77 (2017) 887 [arXiv:1709.08649] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Di Vita, C. Grojean, G. Panico, M. Riembau and T. Vantalon, A global view on the Higgs self-coupling, JHEP 09 (2017) 069 [arXiv:1704.01953] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    T. Barklow, K. Fujii, S. Jung, M.E. Peskin and J. Tian, Model-Independent Determination of the Triple Higgs Coupling at e + e Colliders, Phys. Rev. D 97 (2018) 053004 [arXiv:1708.09079] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    F. Maltoni, D. Pagani and X. Zhao, Constraining the Higgs self-couplings at e + e colliders, JHEP 07 (2018) 087 [arXiv:1802.07616] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G. Degrassi, M. Fedele and P.P. Giardino, Constraints on the trilinear Higgs self coupling from precision observables, JHEP 04 (2017) 155 [arXiv:1702.01737] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G.D. Kribs, A. Maier, H. Rzehak, M. Spannowsky and P. Waite, Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction, Phys. Rev. D 95 (2017) 093004 [arXiv:1702.07678] [INSPIRE].ADSGoogle Scholar
  71. [71]
    T. Liu, K.-F. Lyu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction, Phys. Rev. D 98 (2018) 093004 [arXiv:1803.04359] [INSPIRE].ADSGoogle Scholar
  72. [72]
    W. Bizoń, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, arXiv:1810.04665 [INSPIRE].
  73. [73]
    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
  74. [74]
    S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Schlenk, Numerical evaluation of two-loop integrals with pySecDec, Acta Phys. Polon. Supp. 11 (2018) 375 [arXiv:1712.05755] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    A.J. Barr, M.J. Dolan, C. Englert, D.E. Ferreira de Lima and M. Spannowsky, Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider, JHEP 02 (2015) 016 [arXiv:1412.7154] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].
  78. [78]
    F. Boudjema and E. Chopin, Double Higgs production at the linear colliders and the probing of the Higgs selfcoupling, Z. Phys. C 73 (1996) 85 [hep-ph/9507396] [INSPIRE].
  79. [79]
    S. Dittmaier, A. Huss and C. Schwinn, Dominant mixed QCD-electroweak O(α s α) corrections to Drell-Yan processes in the resonance region, Nucl. Phys. B 904 (2016) 216 [arXiv:1511.08016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    M. Bonetti, K. Melnikov and L. Tancredi, Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion, Phys. Rev. D 97 (2018) 056017 [Erratum ibid. D 97 (2018) 099906] [arXiv:1801.10403] [INSPIRE].
  81. [81]
    C. Anastasiou et al., Mixed QCD-electroweak corrections to Higgs production via gluon fusion in the small mass approximation, arXiv:1811.11211 [INSPIRE].
  82. [82]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].ADSGoogle Scholar
  83. [83]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  85. [85]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  87. [87]
    J. Berntsen, T.O. Espelid and A. Genz, Algorithm 698: DCUHRE: An adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Software 17 (1991) 452.MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].
  89. [89]
    G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    M. Jacob and G.C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7 (1959) 404 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  92. [92]
    ATLAS collaboration, Study of the double Higgs production channel H(→ \( b\overline{b} \))H(→ γγ) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001.
  93. [93]
    M.L. Mangano, T. Plehn, P. Reimitz, T. Schell and H.-S. Shao, Measuring the Top Yukawa Coupling at 100 TeV, J. Phys. G 43 (2016) 035001 [arXiv:1507.08169] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Papaefstathiou and K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider, JHEP 02 (2016) 006 [arXiv:1508.06524] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    CMS collaboration, Constraints on the Higgs boson self-coupling from ttH + tH, Hγγ differential measurements at the HL-LHC, CMS-PAS-FTR-18-020.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di BolognaBolognaItaly
  4. 4.Technische Universität MünchenGarchingGermany
  5. 5.Department of Physical SciencesIndian Institute of Science Education and Research (IISER)PunjabIndia

Personalised recommendations