Advertisement

Constraining four-fermion operators using rare top decays

  • Mikael ChalaEmail author
  • Jose Santiago
  • Michael Spannowsky
Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

New physics can manifest itself by an appreciable increase of the decay rate of top quarks in rare flavour-changing final states. Exploiting the large top quark production rate at the LHC, we bound four-fermion operators contributing to non-resonant t+j using different signal regions of the latest LHC searches for tZj. We also provide prospects for the high-luminosity LHC to test these as well as four-fermion operators contributing to \( t\to b\overline{b}j \), based on improved analysis strategies of existing searches. We single out all weakly-coupled ultraviolet completions inducing such contact interactions at tree level and translate the previous bounds to the parameter space of specific complete models. Being above the TeV, LHC bounds from rare top decays improve over those from flavour physics, electroweak precision data and other LHC searches in several cases.

Keywords

Beyond Standard Model Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].
  5. [5]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].
  7. [7]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Fujii et al., The role of positron polarization for the inital 250 GeV stage of the International Linear Collider, arXiv:1801.02840 [INSPIRE].
  10. [10]
    J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Collider limits on leptophilic interactions, JHEP 03 (2015) 059 [arXiv:1411.7394] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Four and two-lepton signals of leptophilic gauge interactions at large colliders, PoS(CORFU2014)109 [arXiv:1505.00799] [INSPIRE].
  14. [14]
    A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Falkowski, G. Grilli di Cortona and Z. Tabrizi, Future DUNE constraints on EFT, JHEP 04 (2018) 101 [arXiv:1802.08296] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].
  22. [22]
    J. de Blas, M. Chala and J. Santiago, Renormalization Group Constraints on New Top Interactions from Electroweak Precision Data, JHEP 09 (2015) 189 [arXiv:1507.00757] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Bhattacharya, R. Morgan, J. Osborne and A.A. Petrov, Studies of Lepton Flavor Violation at the LHC, Phys. Lett. B 785 (2018) 165 [arXiv:1802.06082] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \) signature, JHEP 11 (2018) 131 [arXiv:1807.02130] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Signatures of NP models in top FCNC decay tc(u) + , JHEP 03 (2009) 077 [arXiv:0812.0294] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.F. Kamenik, A. Katz and D. Stolarski, On Lepton Flavor Universality in Top Quark Decays, JHEP 01 (2019) 032 [arXiv:1808.00964] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for flavour-changing neutral current top-quark decays tqZ in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 07 (2018) 176 [arXiv:1803.09923] [INSPIRE].
  32. [32]
  33. [33]
    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
  38. [38]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  39. [39]
    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N.F. da Silva Fernandes de Castro, Study of the Wtb vertex structure at the ATLAS experiment, Ph.D. Thesis, Coimbra University, Coimbra Portugal (2008).Google Scholar
  41. [41]
    K. Cheung, C.-W. Chiang, N.G. Deshpande and J. Jiang, Constraints on flavor-changing Zmodels by B s mixing, Zproduction and B sμ + μ , Phys. Lett. B 652 (2007) 285 [hep-ph/0604223] [INSPIRE].
  42. [42]
    CMS and LHCb collaborations, Observation of the rare B s0 → μ+μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  43. [43]
    B. Grinstein and J. Martin Camalich, Weak Decays of Excited B Mesons, Phys. Rev. Lett. 116 (2016) 141801 [arXiv:1509.05049] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Sahoo and R. Mohanta, Study of the rare decays B s, d*μ + μ , J. Phys. G 44 (2017) 035001 [arXiv:1612.02543] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Banerjee, M. Chala and M. Spannowsky, Top quark FCNCs in extended Higgs sectors, Eur. Phys. J. C 78 (2018) 683 [arXiv:1806.02836] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  47. [47]
  48. [48]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Di Luzio, M. Kirk and A. Lenz, Updated B s -mixing constraints on new physics models for bsℓ + anomalies, Phys. Rev. D 97 (2018) 095035 [arXiv:1712.06572] [INSPIRE].
  50. [50]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c Constrains Explanations for Anomalies in BD (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS and CMS collaborations, Single top-quark production in the ATLAS and CMS Experiments, in Proceedings of 52nd Rencontres de Moriond on QCD and High Energy Interactions, La Thuile Italy (2017), pg. 177.Google Scholar
  53. [53]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  54. [54]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable Effects of General New Scalar Particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    CMS collaboration, Search for pair production of first generation scalar leptoquarks at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-009 (2017).
  57. [57]
    ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].
  58. [58]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ATLAS collaboration, Search for charged lepton-flavour violation in top-quark decays at the LHC with the ATLAS detector, in 11th International Workshop on Top Quark Physics (TOP2018), Bad Neuenahr Germany (2018) [arXiv:1809.09048] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Particle Physics Phenomenology, Physics DepartmentDurham UniversityDurhamU.K.
  2. 2.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations