Advertisement

Curvature squared invariants in six-dimensional \( \mathcal{N} \) = (1, 0) supergravity

  • Daniel Butter
  • Joseph Novak
  • Mehmet Ozkan
  • Yi Pang
  • Gabriele Tartaglino-MazzucchelliEmail author
Open Access
Regular Article - Theoretical Physics
  • 55 Downloads

Abstract

We describe the supersymmetric completion of several curvature-squared invariants for \( \mathcal{N} \) = (1, 0) supergravity in six dimensions. The construction of the invariants is based on a close interplay between superconformal tensor calculus and recently developed superspace techniques to study general off-shell supergravity-matter couplings. In the case of minimal off-shell Poincaré supergravity based on the dilaton-Weyl multiplet coupled to a linear multiplet as a conformal compensator, we describe off-shell supersymmetric completions for all the three possible purely gravitational curvature-squared terms in six dimensions: Riemann, Ricci, and scalar curvature squared. A linear combination of these invariants describes the off-shell completion of the Gauss-Bonnet term, recently presented in arXiv:1706.09330. We study properties of the Einstein-Gauss-Bonnet super-gravity, which plays a central role in the effective low-energy description of α′-corrected string theory compactified to six dimensions, including a detailed analysis of the spectrum about the AdS3 × S3 solution. We also present a novel locally superconformal invariant based on a higher-derivative action for the linear multiplet. This invariant, which includes gravitational curvature-squared terms, can be defined both coupled to the standard-Weyl or dilaton-Weyl multiplet for conformal supergravity. In the first case, we show how the addition of this invariant to the supersymmetric Einstein-Hilbert term leads to a dynamically generated cosmological constant and non-supersymmetric (A)dS6 solutions. In the dilaton-Weyl multiplet, the new off-shell invariant includes Ricci and scalar curvaturesquared terms and possesses a nontrivial dependence on the dilaton field.

Keywords

Extended Supersymmetry Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. 144B (1984) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Nishino and E. Sezgin, The Complete N = 2, d = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    F. Riccioni, All couplings of minimal six-dimensional supergravity, Nucl. Phys. B 605 (2001) 245 [hep-th/0101074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    A. Salam and E. Sezgin, Chiral Compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Güven, J.T. Liu, C.N. Pope and E. Sezgin, Fine tuning and six-dimensional gauged N = (1, 0) supergravity vacua,Class. Quant. Grav. 21 (2004) 1001 [hep-th/0306201] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    G.W. Gibbons, R. Güven and C.N. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M. Cvetič, G.W. Gibbons and C.N. Pope, A String and M-theory origin for the Salam-Sezgin model, Nucl. Phys. B 677 (2004) 164 [hep-th/0308026] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6-D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S.V. Ketov, Anomalies of six-dimensional gauge theories (in Russian), Sov. J. Nucl. Phys. 47 (1988) 943 [INSPIRE].
  18. [18]
    S.V. Ketov, Anomalies of Kaluza-Klein theories in six-dimensions, Class. Quant. Grav. 7 (1990) 1387 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    J.H. Schwarz, Anomaly-free supersymmetric models in six-dimensions, Phys. Lett. B 371 (1996) 223 [hep-th/9512053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An Anomaly Free Model in Six-Dimensions, Phys. Lett. 151B (1985) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Salam and E. Sezgin, Anomaly Freedom in Chiral Supergravities, Phys. Scripta 32 (1985) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Bergshoeff, T.W. Kephart, A. Salam and E. Sezgin, Global Anomalies in Six-dimensions, Mod. Phys. Lett. A 1 (1986) 267 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S.D. Avramis, A. Kehagias and S. Randjbar-Daemi, A New anomaly-free gauged supergravity in six dimensions, JHEP 05 (2005) 057 [hep-th/0504033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S.D. Avramis and A. Kehagias, A Systematic search for anomaly-free supergravities in six dimensions, JHEP 10 (2005) 052 [hep-th/0508172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Suzuki and Y. Tachikawa, More anomaly-free models of six-dimensional gauged supergravity, J. Math. Phys. 47 (2006) 062302 [hep-th/0512019] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  30. [30]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  31. [31]
    V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    N. Seiberg and W. Taylor, Charge Lattices and Consistency of 6D Supergravity, JHEP 06 (2011) 001 [arXiv:1103.0019] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
  34. [34]
    D.S. Park and W. Taylor, Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry, JHEP 01 (2012) 141 [arXiv:1110.5916] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    T.W. Grimm and W. Taylor, Structure in 6D and 4D N = 1 supergravity theories from F-theory, JHEP 10 (2012) 105 [arXiv:1204.3092] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    F. Bonetti, Effective actions for F-theory compactifications and tensor theories, Ph.D. Thesis, Ludwig-Maximilians-Universitat Munchen (2014) [INSPIRE].
  37. [37]
    S. Monnier, G.W. Moore and D.S. Park, Quantization of anomaly coefficients in 6D \( \mathcal{N} \) = (1, 0) supergravity, JHEP 02 (2018) 020 [arXiv:1711.04777] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    W. Taylor and A.P. Turner, An infinite swampland of U(1) charge spectra in 6D supergravity theories, JHEP 06 (2018) 010 [arXiv:1803.04447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    T. Weigand, TASI Lectures on F-theory, arXiv:1806.01854 [INSPIRE].
  40. [40]
    J. Novak, M. Ozkan, Y. Pang and G. Tartaglino-Mazzucchelli, Gauss-Bonnet supergravity in six dimensions, Phys. Rev. Lett. 119 (2017) 111602 [arXiv:1706.09330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Sen, Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions, JHEP 04 (2013) 156 [arXiv:1205.0971] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2-D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions ×S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and Matter Couplings in Six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  49. [49]
    B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. 156B (1985) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Deser and A.N. Redlich, String Induced Gravity and Ghost Freedom, Phys. Lett. B 176 (1986) 350 [Erratum ibid. B 186 (1987) 461] [INSPIRE].
  51. [51]
    S. Cecotti, S. Ferrara, L. Girardello and M. Porrati, Lorentz Chern-Simons Terms in N = 1 Four-dimensional Supergravity Consistent With Supersymmetry and String Compactification, Phys. Lett. 164B (1985) 46 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Theisen, Fourth Order Supergravity, Nucl. Phys. B 263 (1986) 687 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    I.L. Buchbinder and S.M. Kuzenko, Quantization of the classically equivalent theories in the superspace of simple supergravity and quantum equivalence, Nucl. Phys. B 308 (1988) 162 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Cecotti, S. Ferrara, L. Girardello, M. Porrati and A. Pasquinucci, Matter Coupling in Higher Derivative Supergravity, Phys. Rev. D 33 (1986) 2504 [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Ferrara, S. Sabharwal and M. Villasante, Curvatures and Gauss-Bonnet Theorem in New Minimal Supergravity, Phys. Lett. B 205 (1988) 302 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Ferrara and M. Villasante, Curvatures, Gauss-Bonnet and Chern-Simons Multiplets in Old Minimal N = 1 Supergravity, J. Math. Phys. 30 (1989) 104 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    R. Le Du, Higher derivative supergravity in U(1) superspace, Eur. Phys. J. C 5 (1998) 181 [hep-th/9706058] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062 [arXiv:1307.6546] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    M. Ozkan and Y. Pang, Supersymmetric Completion of Gauss-Bonnet Combination in Five Dimensions, JHEP 03 (2013) 158 [Erratum ibid. 07 (2013) 152] [arXiv:1301.6622] [INSPIRE].
  60. [60]
    M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N} \) = 2 supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  61. [61]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    E. Bergshoeff, A. Salam and E. Sezgin, A Supersymmetric R 2 Action in Six-dimensions and Torsion, Phys. Lett. B 173 (1986) 73 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Bergshoeff, A. Salam and E. Sezgin, Supersymmetric R 2 Actions, Conformal Invariance and Lorentz Chern-Simons Term in Six-dimensions and Ten-dimensions, Nucl. Phys. B 279 (1987) 659 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H. Nishino and S.J. Gates Jr., Manifestly supersymmetric extensions of (curvature)2 -terms in six-dimensional N = 2 supergravity, Phys. Lett. B 173 (1986) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    E. Bergshoeff and M. Rakowski, An off-shell superspace R 2 -action in six dimensions, Phys. Lett. B 191 (1987) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Bergshoeff, F. Coomans, E. Sezgin and A. Van Proeyen, Higher Derivative Extension of 6D Chiral Gauged Supergravity, JHEP 07 (2012) 011 [arXiv:1203.2975] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    Y. Pang, C.N. Pope and E. Sezgin, Spectrum of Higher Derivative 6D Chiral Supergravity on Minkowski ×S 2, JHEP 10 (2012) 154 [arXiv:1204.1060] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Ozkan, Supersymmetric curvature squared invariants in five and six dimensions, Ph.D. Thesis, Texas A&M University (2013) [http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/151223/OZKAN-DISSERTATION-2013.pdf].
  69. [69]
    D. Butter, S.M. Kuzenko, J. Novak and S. Theisen, Invariants for minimal conformal supergravity in six dimensions, JHEP 12 (2016) 072 [arXiv:1606.02921] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    D. Butter, J. Novak and G. Tartaglino-Mazzucchelli, The component structure of conformal supergravity invariants in six dimensions, JHEP 05 (2017) 133 [arXiv:1701.08163] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    W. Chemissany, S. Ferrara, R. Kallosh and C.S. Shahbazi, N = 2 Supergravity Counterterms, Off and On Shell, JHEP 12 (2012) 089 [arXiv:1208.4801] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].zbMATHCrossRefGoogle Scholar
  73. [73]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  74. [74]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton (1992) [INSPIRE].zbMATHGoogle Scholar
  75. [75]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol (1998) [INSPIRE].zbMATHGoogle Scholar
  76. [76]
    F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 01 (2012) 119] [arXiv:1101.2403] [INSPIRE].
  77. [77]
    P. Breitenlohner and A. Kabelschacht, The Auxiliary Fields of N = 2 Extended Supergravity in 5 and 6 Space-time Dimensions, Nucl. Phys. B 148 (1979) 96 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S.J. Gates Jr., A Comment on Superspace Bianchi Identities and Six-dimensional Space-time, Phys. Lett. 84B (1979) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S.J. Gates Jr. and W. Siegel, Understanding Constraints in Superspace Formulations of Supergravity, Nucl. Phys. B 163 (1980) 519 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    A.W. Smith, ‘N = 1, D = 6’ supergravity theory, Class. Quant. Grav. 2 (1985) 167 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    M. Awada, P.K. Townsend and G. Sierra, Six-dimensional Simple and Extended Chiral Supergravity in Superspace, Class. Quant. Grav. 2 (1985) L85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Superstring Actions in D = 3, 4, 6, 10 Curved Superspace, Phys. Lett. 169B (1986) 191 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    W.D. Linch, III and G. Tartaglino-Mazzucchelli, Six-dimensional Supergravity and Projective Superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    R. Grimm, Solution of the Bianchi identities in SU(2)R extended superspace with constraints, in Unification of the Fundamental Particle Interactions, S. Ferrara, J. Ellis and P. van Nieuwenhuizen eds., Plenum Press, New York (1980), pp. 509–523.Google Scholar
  85. [85]
    P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. 100B (1981) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    P.S. Howe, Supergravity in Superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 Supergravity and Projective Superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    P.S. Howe and R.W. Tucker, Scale Invariance in Superspace, Phys. Lett. 80B (1978) 138 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    D. Butter, N = 1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    T. Kugo and S. Uehara, N = 1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  92. [92]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, N = 6 superconformal gravity in three dimensions from superspace, JHEP 01 (2014) 121 [arXiv:1308.5552] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    M.F. Hasler, The Three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    S.J. Gates Jr., Ectoplasm has no topology: The Prelude, in Supersymmetries and Quantum Symmetries (SQS97): Proceedings, 2nd International Seminar, dedicated to the Memory of V.I. Ogievetsky, Dubna, Russia, July 22–26, 1997, pp. 46–57 (1997) [hep-th/9709104] [INSPIRE].
  97. [97]
    S.J. Gates Jr., Ectoplasm has no topology, Nucl. Phys. B 541 (1999) 615 [hep-th/9809056] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    S.J. Gates Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity, World Scientific, Singapore (1991) [INSPIRE].
  100. [100]
    C. Arias, W.D. Linch, III and A.K. Ridgway, Superforms in six-dimensional superspace, JHEP 05 (2016) 016 [arXiv:1402.4823] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    S.J. Gates Jr., Superconformal Transformations and Six-dimensional Space-time, Nucl. Phys. B 162 (1980) 79 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    L. Baulieu, M.P. Bellon and R. Grimm, BRS Symmetry of Supergravity in Superspace and Its Projection to Component Formalism, Nucl. Phys. B 294 (1987) 279 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A Geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  104. [104]
    W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. 80B (1979) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    J. Grundberg and U. Lindström, Actions for Linear Multiplets in Six-dimensions, Class. Quant. Grav. 2 (1985) L33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    U. Lindström and M. Roček, New HyperKähler Metrics and New Supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  108. [108]
    U. Lindström and M. Roček, N = 2 SuperYang-Mills Theory in Projective Superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  109. [109]
    J. Wess, Supersymmetry and Internal Symmetry, Acta Phys. Austriaca 41 (1975) 409 [INSPIRE].MathSciNetGoogle Scholar
  110. [110]
    W. Siegel, Off-shell central charges, Nucl. Phys. B 173 (1980) 51 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  111. [111]
    M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in Superspace and Supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press, Cambridge (1981) [INSPIRE].
  112. [112]
    S.M. Kuzenko, J. Novak and S. Theisen, New superconformal multiplets and higher derivative invariants in six dimensions, Nucl. Phys. B 925 (2017) 348 [arXiv:1707.04445] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  113. [113]
    S.M. Kuzenko, J. Novak and S. Theisen, Non-conformal supercurrents in six dimensions, JHEP 02 (2018) 030 [arXiv:1709.09892] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. [114]
    J. Koller, A six-dimensional superspace approach to extended superfields, Nucl. Phys. B 222 (1983) 319 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  115. [115]
    E. Bergshoeff, E. Sezgin and E. Sokatchev, Couplings of selfdual tensor multiplet in six-dimensions, Class. Quant. Grav. 13 (1996) 2875 [hep-th/9605087] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  116. [116]
    E. Sokatchev, Off-shell Six-dimensional Supergravity in Harmonic Superspace, Class. Quant. Grav. 5 (1988) 1459 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  117. [117]
    L. Mezincescu, On The Superfield Formulation Of O(2) Supersymmetry, JINR-P2-12572 [INSPIRE].
  118. [118]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Supercurrents, Nucl. Phys. B 192 (1981) 332 [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP 09 (2012) 131 [arXiv:1205.6981] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformal supergravities as Chern-Simons theories revisited, JHEP 03 (2013) 113 [arXiv:1212.6852] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. [121]
    S.M. Kuzenko and J. Novak, On supersymmetric Chern-Simons-type theories in five dimensions, JHEP 02 (2014) 096 [arXiv:1309.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    L. Bonora, P. Pasti and M. Tonin, Chiral Anomalies in Higher Dimensional Supersymmetric Theories, Nucl. Phys. B 286 (1987) 150 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  123. [123]
    K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].
  124. [124]
    K. Peeters, Introducing Cadabra: A Symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
  125. [125]
    S.M. Kuzenko and J. Novak, On curvature squared terms in N = 2 supergravity, Phys. Rev. D 92 (2015) 085033 [arXiv:1507.04922] [INSPIRE].ADSMathSciNetGoogle Scholar
  126. [126]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Lukierski and A. Nowicki, All Possible de Sitter Superalgebras and the Presence of Ghosts, Phys. Lett. 151B (1985) 382 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  128. [128]
    K. Pilch, P. van Nieuwenhuizen and M.F. Sohnius, de Sitter Superalgebras and Supergravity, Commun. Math. Phys. 98 (1985) 105 [INSPIRE].
  129. [129]
    R. D’Auria and S. Vaula, D = 6, N = 2, F(4) supergravity with supersymmetric de Sitter background, JHEP 09 (2002) 057 [hep-th/0203074] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  130. [130]
    P. Fré, M. Trigiante and A. Van Proeyen, Stable de Sitter vacua from N = 2 supergravity, Class. Quant. Grav. 19 (2002) 4167 [hep-th/0205119] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    M. Ozkan, Off-shell \( \mathcal{N} \) = 2 linear multiplets in five dimensions, JHEP 11 (2016) 157 [arXiv:1608.00349] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. [132]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional Superfield Supergravity, Phys. Lett. B 661 (2008) 42 [arXiv:0710.3440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. [133]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D Supergravity and Projective Superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  134. [134]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  135. [135]
    S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  136. [136]
    G. Tartaglino-Mazzucchelli, 2D N = (4, 4) superspace supergravity and bi-projective superfields, JHEP 04 (2010) 034 [arXiv:0911.2546] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  137. [137]
    G. Tartaglino-Mazzucchelli, On 2D N = (4, 4) superspace supergravity, Phys. Part. Nucl. Lett. 8 (2011) 251 [arXiv:0912.5300] [INSPIRE].CrossRefGoogle Scholar
  138. [138]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  139. [139]
    D. Butter, New approach to curved projective superspace, Phys. Rev. D 92 (2015) 085004 [arXiv:1406.6235] [INSPIRE].ADSMathSciNetGoogle Scholar
  140. [140]
    D. Butter, Projective multiplets and hyperkähler cones in conformal supergravity, JHEP 06 (2015) 161 [arXiv:1410.3604] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  141. [141]
    D. Butter and J. Novak, Component reduction in N = 2 supergravity: the vector, tensor and vector-tensor multiplets, JHEP 05 (2012) 115 [arXiv:1201.5431] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  142. [142]
    M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  143. [143]
    F. Bonetti, D. Klemm, W.A. Sabra and P. Sloane, Spinorial geometry, off-shell Killing spinor identities and higher derivative 5D supergravities, JHEP 08 (2018) 121 [arXiv:1806.04108] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. [144]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, String Theory Effects on Five-Dimensional Black Hole Physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.George and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  2. 2.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany
  3. 3.Department of PhysicsIstanbul Technical UniversityIstanbulTurkey
  4. 4.Mathematical InstituteUniversity of OxfordOxfordU.K.
  5. 5.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium
  6. 6.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations