Advertisement

Entanglement and chaos in warped conformal field theories

  • Luis ApoloEmail author
  • Song He
  • Wei Song
  • Jianfei Xu
  • Junjie Zheng
Open Access
Regular Article - Theoretical Physics
  • 61 Downloads

Abstract

Various aspects of warped conformal field theories (WCFTs) are studied including entanglement entropy on excited states, the Rényi entropy after a local quench, and out-of-time-order four-point functions. Assuming a large central charge and dominance of the vacuum block in the conformal block expansion, (i) we calculate the single-interval entanglement entropy on an excited state, matching previous finite temperature results by changing the ensemble; and (ii) we show that WCFTs are maximally chaotic, a result that is compatible with the existence of black holes in the holographic duals. Finally, we relax the aforementioned assumptions and study the time evolution of the Rényi entropy after a local quench. We find that the change in the Rényi entropy is topological, vanishing at early and late times, and nonvanishing in between only for charged states in spectrally-flowed WCFTs.

Keywords

Conformal Field Theory Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.M. Hofman and A. Strominger, Chiral scale and conformal invariance in 2D quantum field theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].
  2. [2]
    S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].
  3. [3]
    G. Compère, W. Song and A. Strominger, Chiral Liouville gravity, JHEP 05 (2013) 154 [arXiv:1303.2660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D.M. Hofman and B. Rollier, Warped conformal field theory as lower spin gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].
  5. [5]
    K. Jensen, Locality and anomalies in warped conformal field theory, JHEP 12 (2017) 111 [arXiv:1710.11626] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  7. [7]
    P. Chaturvedi, Y. Gu, W. Song and B. Yu, A note on the complex SYK model and warped CFTs, JHEP 12 (2018) 101 [arXiv:1808.08062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].
  9. [9]
    G. Compere and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav. 26 (2009) 012001 [Erratum ibid. 26 (2009) 139801] [arXiv:0808.1911] [INSPIRE].
  10. [10]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].
  11. [11]
    G. Compère and S. Detournay, Boundary conditions for spacelike and timelike warped AdS 3 spaces in topologically massive gravity, JHEP 08 (2009) 092 [arXiv:0906.1243] [INSPIRE].
  12. [12]
    S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP 08 (2013) 121 [arXiv:1212.6792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Compère, W. Song and A. Strominger, New boundary conditions for AdS 3, JHEP 05 (2013) 152 [arXiv:1303.2662] [INSPIRE].
  14. [14]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Bagchi and R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602 [arXiv:1410.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Azeyanagi, S. Detournay and M. Riegler, Warped black holes in lower-spin gravity, Phys. Rev. D 99 (2019) 026013 [arXiv:1801.07263] [INSPIRE].
  19. [19]
    L. Apolo and W. Song, Bootstrapping holographic warped CFTs or: how I learned to stop worrying and tolerate negative norms, JHEP 07 (2018) 112 [arXiv:1804.10525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    W. Song and J. Xu, Correlation functions of warped CFT, JHEP 04 (2018) 067 [arXiv:1706.07621] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    W. Song, Q. Wen and J. Xu, Modifications to holographic entanglement entropy in warped CFT, JHEP 02 (2017) 067 [arXiv:1610.00727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Jiang, W. Song and Q. Wen, Entanglement entropy in flat holography, JHEP 07 (2017) 142 [arXiv:1706.07552] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2d CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].
  28. [28]
    M. Nozaki, T. Numasawa and T. Takayanagi, Quantum entanglement of local operators in conformal field theories, Phys. Rev. Lett. 112 (2014) 111602 [arXiv:1401.0539] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Nozaki, Notes on quantum entanglement of local operators, JHEP 10 (2014) 147 [arXiv:1405.5875] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].
  31. [31]
    W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs, JHEP 04 (2015) 099 [arXiv:1501.00757] [INSPIRE].
  32. [32]
    B. Chen, W.-Z. Guo, S. He and J.-Q. Wu, Entanglement entropy for descendent local operators in 2D CFTs, JHEP 10 (2015) 173 [arXiv:1507.01157] [INSPIRE].
  33. [33]
    W.-Z. Guo, S. He and Z.-X. Luo, Entanglement entropy in (1 + 1)D CFTs with multiple local excitations, JHEP 05 (2018) 154 [arXiv:1802.08815] [INSPIRE].
  34. [34]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2d conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].
  35. [35]
    S. He, Conformal bootstrap to Rényi entropy in 2D Liouville and super-Liouville CFTs, Phys. Rev. D 99 (2019) 026005 [arXiv:1711.00624] [INSPIRE].
  36. [36]
    Y. Kusuki and T. Takayanagi, Rényi entropy for local quenches in 2D CFT from numerical conformal blocks, JHEP 01 (2018) 115 [arXiv:1711.09913] [INSPIRE].
  37. [37]
    Y. Kusuki, Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, JHEP 01 (2019) 025 [arXiv:1810.01335] [INSPIRE].
  38. [38]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Perlmutter, Bounding the space of holographic CFTs with chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  41. [41]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
  43. [43]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
  44. [44]
    M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Lect. Notes Phys. 931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].
  45. [45]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
  47. [47]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefGoogle Scholar
  48. [48]
    P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP 2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].
  49. [49]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].
  50. [50]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  51. [51]
    B. Chen, P. Hao and W. Song, Mutual Rényi information in the holographic warped CFT, in preparation.Google Scholar
  52. [52]
    E. Perlmutter, Virasoro conformal blocks in closed form, JHEP 08 (2015) 088 [arXiv:1502.07742] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Hartman and A. Strominger, Central charge for AdS 2 quantum gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [INSPIRE].
  55. [55]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS 2 black holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].
  56. [56]
    A. Castro and W. Song, Comments on AdS 2 gravity, arXiv:1411.1948 [INSPIRE].
  57. [57]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  58. [58]
    A. Castro and F. Larsen, Near extremal Kerr entropy from AdS 2 quantum gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [INSPIRE].
  59. [59]
    Y. Matsuo, T. Tsukioka and C.-M. Yoo, Another realization of Kerr/CFT correspondence, Nucl. Phys. B 825 (2010) 231 [arXiv:0907.0303] [INSPIRE].
  60. [60]
    Q. Wen, Towards the generalized gravitational entropy for spacetimes with non-Lorentz invariant duals, JHEP 01 (2019) 220 [arXiv:1810.11756] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Out-of-time-ordered correlators in (T 2)n /Z n, Phys. Rev. D 96 (2017) 046020 [arXiv:1703.09939] [INSPIRE].
  63. [63]
    A. Belin, Permutation orbifolds and chaos, JHEP 11 (2017) 131 [arXiv:1705.08451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].
  66. [66]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    S. Leichenauer, Disrupting entanglement of black holes, Phys. Rev. D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
  68. [68]
    A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].
  69. [69]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
  70. [70]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Luis Apolo
    • 1
    Email author
  • Song He
    • 2
    • 3
  • Wei Song
    • 1
  • Jianfei Xu
    • 4
  • Junjie Zheng
    • 1
  1. 1.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina
  2. 2.Max Planck Institute for Gravitational Physics, Albert Einstein InstituteGolmGermany
  3. 3.Center for Theoretical Physics and College of PhysicsJilin UniversityChangchunChina
  4. 4.Shing-Tung Yau Center and School of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations