Advertisement

Exact summation of leading infrared logarithms in 2D effective field theories

  • Jonas Linzen
  • Maxim V. PolyakovEmail author
  • Kirill M. Semenov-Tian-Shansky
  • Nika S. Sokolova
Open Access
Regular Article - Theoretical Physics
  • 38 Downloads

Abstract

A method of exact all-order summation of leading infrared logarithms in two dimensional massless Φ4-type non-renormalizable effective field theories (EFTs) is developed. The method is applied to the O(N)-symmetric EFT, which is a two-dimensional sibling of the four dimensional O(N + 1)/O(N) sigma-model. For the first time the exact all-order summation of the (E2ln(1/E))n contributions (chiral logarithms) for the 2 → 2 scattering amplitudes is performed in closed analytical form. The cases when the resulting amplitudes turn to be meromorphic functions with an infinite number of poles (Landau poles) are identified. This provides the first explicit example of quasi-renormalizable field theories.

Keywords

Effective Field Theories Sigma Models Field Theories in Lower Dimensions Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Kivel, M.V. Polyakov and A. Vladimirov, Chiral Logarithms in the Massless Limit Tamed, Phys. Rev. Lett. 101 (2008) 262001 [arXiv:0809.3236] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Koschinski, M.V. Polyakov and A.A. Vladimirov, Leading Infrared Logarithms from Unitarity, Analyticity and Crossing, Phys. Rev. D 82 (2010) 014014 [arXiv:1004.2197] [INSPIRE].
  3. [3]
    N. Kivel, M.V. Polyakov and A. Vladimirov, Large-N Summation of Chiral Logs for Generalized Parton Distributions, Phys. Rev. D 79 (2009) 014028 [arXiv:0809.2064] [INSPIRE].
  4. [4]
    N.A. Kivel, M.V. Polyakov and A.A. Vladimirov, Leading Chiral Logarithms for Pion Form Factors to Arbitrary Number of Loops, JETP Lett. 89 (2009) 529 [arXiv:0904.3008] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I.A. Perevalova, M.V. Polyakov, A.N. Vall and A.A. Vladimirov, Chiral Inflation of the Pion Radius, arXiv:1105.4990 [INSPIRE].
  6. [6]
    B. Ananthanarayan, S. Ghosh, A. Vladimirov and D. Wyler, Leading Logarithms of the Two Point Function in Massless O(N) and SU(N) Models to any Order from Analyticity and Unitarity, Eur. Phys. J. A 54 (2018) 123 [arXiv:1803.07013] [INSPIRE].
  7. [7]
    M.V. Polyakov and A.A. Vladimirov, Leading Infrared Logarithms for σ-model with Fields on Arbitrary Riemann Manifold, Theor. Math. Phys. 169 (2011) 1499 [arXiv:1012.4205] [INSPIRE].
  8. [8]
    A.N. Vasilev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, U.S.A. (2004) [INSPIRE].
  9. [9]
    J. Koschinski, Leading Logarithms in Four Fermion Theories, Ph.D. Thesis, Ruhr University, Bochum, (2015), unpublished [https://d-nb.info/1109051174/34].
  10. [10]
    M.V. Polyakov, K.M. Semenov-Tian-Shansky, A.O. Smirnov and A.A. Vladimirov, Quasi-Renormalizable Quantum Field Theories, arXiv:1811.08449 [INSPIRE].
  11. [11]
    E. Brézin and J. Zinn-Justin, Spontaneous Breakdown of Continuous Symmetries Near Two-Dimensions, Phys. Rev. B 14 (1976) 3110 [INSPIRE].
  12. [12]
    E. Brézin, J. Zinn-Justin and J.C. Le Guillou, Renormalization of the Nonlinear σ-model in 2+ϵ Dimension, Phys. Rev. D 14 (1976) 2615 [INSPIRE].
  13. [13]
    F. David, Cancellations of Infrared Divergences in the Two-dimensional Nonlinear σ-models, Commun. Math. Phys. 81 (1981) 149 [INSPIRE].
  14. [14]
    W.I. Smirnow, Lehrgang der höheren Mathematik, Teil 3/2, Deutscher Verlag der Wissenschaften, Berlin (1955).Google Scholar
  15. [15]
    R. Bacher and, P. Flajolet, Pseudo-factorials, Elliptic Functions, and Continued Fractions, Ramanujan J. 21 (2010) 71 [arXiv:0901.1379].
  16. [16]
    E. van Fossen Conrad and P. Flajolet, The Fermat Cubic, Elliptic Functions, Continued Fractions, and a Combinatorial Excursion, Sém. Lothar. Combin. 54 (2006) B54g [math/0507268] [https://www.mat.univie.ac.at/~slc/wpapers/s54conflaj.pdf].
  17. [17]
    V.Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz and C. Lammerzahl, Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in General Relativity, J. Geom. Phys. 61 (2011) 899 [arXiv:1011.6459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Delphenich, J. Schechter and S. Vaidya, Pion pion scattering in two-dimensions, Phys. Rev. D 59 (1999) 056004 [hep-ph/9806349] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Jonas Linzen
    • 1
  • Maxim V. Polyakov
    • 1
    • 2
    Email author
  • Kirill M. Semenov-Tian-Shansky
    • 2
    • 3
  • Nika S. Sokolova
    • 2
    • 4
  1. 1.Institute of Theoretical Physics II, Faculty of Physics and AstronomyRuhr University BochumBochumGermany
  2. 2.National Research Centre “Kurchatov Institute”: Petersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.Saint Petersburg National Research Academic University of the Russian Academy of SciencesSt. PetersburgRussia
  4. 4.Faculty of PhysicsSt. Petersburg State UniversityPeterhofRussia

Personalised recommendations