Invisible neutrino decays at the MOMENT experiment

  • Jian Tang
  • Tse-Chun WangEmail author
  • Yibing Zhang
Open Access
Regular Article - Theoretical Physics


We investigate invisible decays of the third neutrino mass eigenstate in future accelerator neutrino experiments using muon-decay beams such as MuOn-decay MEdium baseline NeuTrino beam experiment (MOMENT). MOMENT has outstanding potential to measure the deficit or excess in the spectra caused by neutrino decays, especially in νμ and \( {\overline{\nu}}_{\mu } \) disappearance channels. Such an experiment will improve the constraints of the neutrino lifetime τ3. Compared with exclusion limits in the current accelerator neutrino experiments T2K and NOvA under the stable ν assumption, we expect that MOMENT gives the bound of τ3/m3 ≥ 10−11 s/eV at 3σ, which is better than their recent limits: τ3/m3 ≥ 7 × 10−13 s/eV in NOvA and τ3/m3 ≥ 1.41 × 10−12 s/eV in T2K. The non-decay scenario is expected to be excluded by MOMENT at a confidence level > 3σ, if the best fit results in T2K and NOvA are confirmed. We further find that reducing systematic uncertainties is more important than the running time. Finally, we find some impact of τ3/m3 on the precision measurement of other oscillation parameters.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    SNO collaboration, Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  2. [2]
    Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
  3. [3]
    KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].
  4. [4]
    Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
  5. [5]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  6. [6]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    JUNO collaboration, Status and prospects of the JUNO experiment, J. Phys. Conf. Ser. 888 (2017) 012022 [INSPIRE].
  8. [8]
    H. Seo, Status of RENO-50, PoS(NEUTEL2015)083 (2015).Google Scholar
  9. [9]
    T2K collaboration, Neutrino oscillation physics potential of the T2K experiment, PTEP 2015 (2015) 043C01 [arXiv:1409.7469] [INSPIRE].
  10. [10]
    NOvA collaboration, First measurement of muon-neutrino disappearance in NOvA, Phys. Rev. D 93 (2016) 051104 [arXiv:1601.05037] [INSPIRE].
  11. [11]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
  12. [12]
    T2K collaboration, Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  13. [13]
    NOvA collaboration, Constraints on Oscillation Parameters from ν e Appearance and ν μ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  14. [14]
    A. Acker, S. Pakvasa and J.T. Pantaleone, Decaying Dirac neutrinos, Phys. Rev. D 45 (1992) 1 [INSPIRE].
  15. [15]
    A. Acker and S. Pakvasa, Solar neutrino decay, Phys. Lett. B 320 (1994) 320 [hep-ph/9310207] [INSPIRE].
  16. [16]
    G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. 99B (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. 98B (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Pakvasa, Do neutrinos decay?, AIP Conf. Proc. 542 (2000) 99 [hep-ph/0004077] [INSPIRE].
  19. [19]
    C.W. Kim and W.P. Lam, Some remarks on neutrino decay via a Nambu-Goldstone boson, Mod. Phys. Lett. A 5 (1990) 297 [INSPIRE].
  20. [20]
    A. Acker, A. Joshipura and S. Pakvasa, A Neutrino decay model, solar anti-neutrinos and atmospheric neutrinos, Phys. Lett. B 285 (1992) 371 [INSPIRE].
  21. [21]
    M. Lindner, T. Ohlsson and W. Winter, A Combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].
  22. [22]
    R. Picoreti, M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Neutrino Decay and Solar Neutrino Seasonal Effect, Phys. Lett. B 761 (2016) 70 [arXiv:1506.08158] [INSPIRE].
  23. [23]
    J.M. Berryman, A. de Gouvêa and D. Hernandez, Solar Neutrinos and the Decaying Neutrino Hypothesis, Phys. Rev. D 92 (2015) 073003 [arXiv:1411.0308] [INSPIRE].
  24. [24]
    G.-Y. Huang and S. Zhou, Constraining Neutrino Lifetimes and Magnetic Moments via Solar Neutrinos in the Large Xenon Detectors, JCAP 02 (2019) 024 [arXiv:1810.03877] [INSPIRE].
  25. [25]
    M.C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].
  26. [26]
    P.B. Denton and I. Tamborra, Invisible Neutrino Decay Could Resolve IceCubes Track and Cascade Tension, Phys. Rev. Lett. 121 (2018) 121802 [arXiv:1805.05950] [INSPIRE].
  27. [27]
    P.F. de Salas, S. Pastor, C.A. Ternes, T. Thakore and M. Tórtola, Constraining the invisible neutrino decay with KM3NeT-ORCA, Phys. Lett. B 789 (2019) 472 [arXiv:1810.10916] [INSPIRE].
  28. [28]
    R.A. Gomes, A.L.G. Gomes and O.L.G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].
  29. [29]
    T. Abrahão, H. Minakata, H. Nunokawa and A.A. Quiroga, Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, JHEP 11 (2015) 001 [arXiv:1506.02314] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Choubey, S. Goswami, C. Gupta, S.M. Lakshmi and T. Thakore, Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector, Phys. Rev. D 97 (2018) 033005 [arXiv:1709.10376] [INSPIRE].
  31. [31]
    S. Choubey, S. Goswami and D. Pramanik, A study of invisible neutrino decay at DUNE and its effects on θ 23 measurement, JHEP 02 (2018) 055 [arXiv:1705.05820] [INSPIRE].
  32. [32]
    S. Choubey, D. Dutta and D. Pramanik, Invisible neutrino decay in the light of NOvA and T2K data, JHEP 08 (2018) 141 [arXiv:1805.01848] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.M. Gago, R.A. Gomes, A.L.G. Gomes, J. Jones-Perez and O.L.G. Peres, Visible neutrino decay in the light of appearance and disappearance long baseline experiments, JHEP 11 (2017) 022 [arXiv:1705.03074] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.G. Doroshkevich and M.Y. Khlopov, Formation of structure in the Universe with unstable neutrinos, Mon. Not. Roy. Astron. Soc. 211 (1984) 277.ADSCrossRefGoogle Scholar
  35. [35]
    A.G. Doroshkevich, M. Khlopov and A.A. Klypin, Large-scale structure of the universe in unstable dark matter models, Mon. Not. Roy. Astron. Soc. 239 (1989) 923 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Cao et al., Muon-decay medium-baseline neutrino beam facility, Phys. Rev. ST Accel. Beams 17 (2014) 090101 [arXiv:1401.8125] [INSPIRE].
  37. [37]
    M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].
  38. [38]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than d = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].
  39. [39]
    M.B. Krauss, T. Ota, W. Porod and W. Winter, Neutrino mass from higher than d = 5 effective operators in SUSY and its test at the LHC, Phys. Rev. D 84 (2011) 115023 [arXiv:1109.4636] [INSPIRE].
  40. [40]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].
  41. [41]
    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
  42. [42]
    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  43. [43]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  44. [44]
    MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
  45. [45]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Hahn, Routines for the diagonalization of complex matrices, physics/0607103 [INSPIRE].
  48. [48]
    J. Tang and Y. Zhang, Study of nonstandard charged-current interactions at the MOMENT experiment, Phys. Rev. D 97 (2018) 035018 [arXiv:1705.09500] [INSPIRE].
  49. [49]
    J. Tang, Y. Zhang and Y.-F. Li, Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities, Phys. Lett. B 774 (2017) 217 [arXiv:1708.04909] [INSPIRE].
  50. [50]
    J.-E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, Physics potential of the CERN-MEMPHYS neutrino oscillation project, JHEP 04 (2007) 003 [hep-ph/0603172] [INSPIRE].
  51. [51]
    Hyper-Kamiokande Working Group collaboration, T2HK: J-PARC upgrade plan for future and beyond T2K, in 15th International Workshop on Neutrino Factories, Super Beams and Beta Beams (NuFact2013), Beijing, China, August 19-24, 2013 (2013) [arXiv:1311.5287] [INSPIRE].
  52. [52]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  53. [53]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of PhysicsSun Yat-Sen UniversityGuangzhouP.R. China
  2. 2.School of Mathematical and Physical SciencesUniversity of SussexBrightonU.K.

Personalised recommendations