Skip to main content

A smooth exit from eternal inflation?

A preprint version of the article is available at arXiv.

Abstract

The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

References

  1. [1]

    A. Vilenkin, The Birth of Inflationary Universes, Phys. Rev. D 27 (1983) 2848 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. [2]

    A.D. Linde, D.A. Linde and A. Mezhlumian, Nonperturbative amplifications of inhomogeneities in a selfreproducing universe, Phys. Rev. D 54 (1996) 2504 [gr-qc/9601005] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Winitzki. Eternal inflation, World Scientific (2008).

  4. [4]

    P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, The Phase Transition to Slow-roll Eternal Inflation, JHEP 09 (2008) 036 [arXiv:0802.1067] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J. Hartle, S.W. Hawking and T. Hertog, The No-Boundary Measure in the Regime of Eternal Inflation, Phys. Rev. D 82 (2010) 063510 [arXiv:1001.0262] [INSPIRE].

  6. [6]

    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    V. Balasubramanian, J. de Boer and D. Minic, Mass, entropy and holography in asymptotically de Sitter spaces, Phys. Rev. D 65 (2002) 123508 [hep-th/0110108] [INSPIRE].

  8. [8]

    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    R. Brout, F. Englert and E. Gunzig, The Creation of the Universe as a Quantum Phenomenon, Annals Phys. 115 (1978) 78 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. [11]

    J.B. Hartle, S.W. Hawking and T. Hertog, The Classical Universes of the No-Boundary Quantum State, Phys. Rev. D 77 (2008) 123537 [arXiv:0803.1663] [INSPIRE].

  12. [12]

    J.B. Hartle, S.W. Hawking and T. Hertog, No-Boundary Measure of the Universe, Phys. Rev. Lett. 100 (2008) 201301 [arXiv:0711.4630] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    J. Hartle, S.W. Hawking and T. Hertog, Local Observation in Eternal inflation, Phys. Rev. Lett. 106 (2011) 141302 [arXiv:1009.2525] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  15. [15]

    P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].

  16. [16]

    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  17. [17]

    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].

  18. [18]

    T. Hertog and J. Hartle, Holographic No-Boundary Measure, JHEP 05 (2012) 095 [arXiv:1111.6090] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, JHEP 02 (2018) 050 [arXiv:1603.05665] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    E.A. Bergshoeff, J. Hartong, A. Ploegh, J. Rosseel and D. Van den Bleeken, Pseudo-supersymmetry and a tale of alternate realities, JHEP 07 (2007) 067 [arXiv:0704.3559] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence in AdS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    J.B. Hartle, S.W. Hawking and T. Hertog, Quantum Probabilities for Inflation from Holography, JCAP 01 (2014) 015 [arXiv:1207.6653] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP 04 (2013) 047 [arXiv:1211.4550] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    J. Garriga, K. Skenderis and Y. Urakawa, Multi-field inflation from holography, JCAP 01 (2015) 028 [arXiv:1410.3290] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    N. Afshordi, C. Corianò, L. Delle Rose, E. Gould and K. Skenderis, From Planck data to Planck era: Observational tests of Holographic Cosmology, Phys. Rev. Lett. 118 (2017) 041301 [arXiv:1607.04878] [INSPIRE].

  29. [29]

    J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].

  30. [30]

    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    N. Bobev, P. Bueno and Y. Vreys, Comments on Squashed-sphere Partition Functions, JHEP 07 (2017) 093 [arXiv:1705.00292] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    S. Fischetti and T. Wiseman, On universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimes, JHEP 12 (2017) 133 [arXiv:1707.03825] [INSPIRE].

  34. [34]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    S.A. Hartnoll and S.P. Kumar, The O(N) model on a squashed S 3 and the Klebanov-Polyakov correspondence, JHEP 06 (2005) 012 [hep-th/0503238] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    N. Bobev, T. Hertog and Y. Vreys, The NUTs and Bolts of Squashed Holography, JHEP 11 (2016) 140 [arXiv:1610.01497] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    D. Anninos, F. Denef and D. Harlow, Wave function of Vasiliev’s universe: A few slices thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].

  38. [38]

    G. Conti, T. Hertog and Y. Vreys, Squashed Holography with Scalar Condensates, arXiv:1707.09663 [INSPIRE].

  39. [39]

    D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP 02 (2014) 007 [arXiv:1305.6321] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    B.L. Hu, Scalar Waves in the Mixmaster Universe. I. The Helmholtz Equation in a Fixed Background, Phys. Rev. D 8 (1973) 1048 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984) 479.

    MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Hertog.

Additional information

ArXiv ePrint: 1707.07702

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hawking, S.W., Hertog, T. A smooth exit from eternal inflation?. J. High Energ. Phys. 2018, 147 (2018). https://doi.org/10.1007/JHEP04(2018)147

Download citation

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Models of Quantum Gravity
  • Spacetime Singularities