Advertisement

The dark side of flipped trinification

  • P. V. Dong
  • D. T. Huong
  • Farinaldo S. Queiroz
  • José W. F. Valle
  • C. A. Vaquera-Araujo
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a model which unifies the Left-Right symmetry with the SU(3) L gauge group, called flipped trinification, and based on the SU(3) C ⊗ SU(3) L ⊗ SU(3) R ⊗ U(1) X gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W P = (−1)3(BL)+2s, and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.

Keywords

Cosmology of Theories beyond the SM Discrete Symmetries Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Silk et al., Particle Dark Matter: Observations, Models and Searches, Cambridge University Press, Cambridge (2010).Google Scholar
  2. [2]
    F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Is the dark matter particle its own antiparticle?, Phys. Rev. D 95 (2017) 095010 [arXiv:1610.06581] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R.M. Capdevilla, A. Delgado, A. Martin and N. Raj, Characterizing dark matter at the LHC in Drell-Yan events, Phys. Rev. D 97 (2018) 035016 [arXiv:1709.00439] [INSPIRE].ADSGoogle Scholar
  4. [4]
    B.J. Kavanagh, F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments, JHEP 10 (2017) 059 [arXiv:1706.07819] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  6. [6]
    R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  9. [9]
    G. Senjanović, Spontaneous Breakdown of Parity in a Class of Gauge Theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Nemevšek, G. Senjanović and Y. Zhang, Warm Dark Matter in Low Scale Left-Right Theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, arXiv:1512.03332 [INSPIRE].
  14. [14]
    S. Patra and S. Rao, Singlet fermion Dark Matter within Left-Right Model, Phys. Lett. B 759 (2016) 454 [arXiv:1512.04053] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077 [arXiv:1608.06266] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Singer, J.W.F. Valle and J. Schechter, Canonical Neutral Current Predictions From the Weak Electromagnetic Gauge Group SU(3) × U(1), Phys. Rev. D 22 (1980) 738 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.W.F. Valle and M. Singer, Lepton Number Violation With Quasi Dirac Neutrinos, Phys. Rev. D 28 (1983) 540 [INSPIRE].ADSGoogle Scholar
  18. [18]
    F. Pisano and V. Pleitez, An SU(3) × U(1) model for electroweak interactions, Phys. Rev. D 46 (1992) 410 [hep-ph/9206242] [INSPIRE].
  19. [19]
    P.H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 2889 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Foot, O.F. Hernandez, F. Pisano and V. Pleitez, Lepton masses in an SU(3)L × U(1)N gauge model, Phys. Rev. D 47 (1993) 4158 [hep-ph/9207264] [INSPIRE].
  21. [21]
    J.C. Montero, F. Pisano and V. Pleitez, Neutral currents and GIM mechanism in SU(3)L × U(1)N models for electroweak interactions, Phys. Rev. D 47 (1993) 2918 [hep-ph/9212271] [INSPIRE].
  22. [22]
    R. Foot, H.N. Long and T.A. Tran, SU(3)L ⊗ U(1)N and SU(4)L ⊗ U(1)N gauge models with right-handed neutrinos, Phys. Rev. D 50 (1994) R34 [hep-ph/9402243] [INSPIRE].
  23. [23]
    H.N. Long, The 331 model with right handed neutrinos, Phys. Rev. D 53 (1996) 437 [hep-ph/9504274] [INSPIRE].
  24. [24]
    M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Three-family left-right symmetry with low-scale seesaw mechanism, JHEP 05 (2017) 100 [arXiv:1611.04571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    K.S. Babu, X.-G. He and S. Pakvasa, Neutrino Masses and Proton Decay Modes in SU(3) × SU(3) × SU(3) Trinification, Phys. Rev. D 33 (1986) 763 [INSPIRE].ADSGoogle Scholar
  26. [26]
    H. Nishimura and A. Okunishi, Strong CP problem and nucleon stability in SU(3) × SU(3) × SU(3) trinification model, Phys. Lett. B 209 (1988) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E.D. Carlson and M.Y. Wang, Trinification and the strong P problem, hep-ph/9211279 [INSPIRE].
  28. [28]
    S. Willenbrock, Triplicated trinification, Phys. Lett. B 561 (2003) 130 [hep-ph/0302168] [INSPIRE].
  29. [29]
    J. Sayre, S. Wiesenfeldt and S. Willenbrock, Minimal trinification, Phys. Rev. D 73 (2006) 035013 [hep-ph/0601040] [INSPIRE].
  30. [30]
    C. Cauet, H. Pas, S. Wiesenfeldt, H. Pas and S. Wiesenfeldt, Trinification, the Hierarchy Problem and Inverse Seesaw Neutrino Masses, Phys. Rev. D 83 (2011) 093008 [arXiv:1012.4083] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, The Left-Right SU(3)L × SU(3)R × U(1)X Model with Light, keV and Heavy Neutrinos, Phys. Rev. D 82 (2010) 035013 [arXiv:1003.3260] [INSPIRE].
  32. [32]
    B. Stech, Trinification Phenomenology and the structure of Higgs Bosons, JHEP 08 (2014) 139 [arXiv:1403.2714] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP 08 (2015) 130 [arXiv:1507.06848] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    C.P. Ferreira, M.M. Guzzo and P.C. de Holanda, Cosmological bounds of sterile neutrinos in a SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1)N model as dark matter candidates, Braz. J. Phys. 46 (2016) 453 [arXiv:1509.02977] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G.M. Pelaggi, A. Strumia and E. Vigiani, Trinification can explain the di-photon and di-boson LHC anomalies, JHEP 03 (2016) 025 [arXiv:1512.07225] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    O. Rodríguez, R.H. Benavides, W.A. Ponce and E. Rojas, Flipped versions of the universal 3-3-1 and the left-right symmetric models in [SU(3)]3 : a comprehensive approach, Phys. Rev. D 95 (2017) 014009 [arXiv:1605.00575] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.E. Camargo-Molina, A.P. Morais, R. Pasechnik and J. Wessén, On a radiative origin of the Standard Model from Trinification, JHEP 09 (2016) 129 [arXiv:1606.03492] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    D.T. Huong and P.V. Dong, Left-right asymmetry and 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 095019 [arXiv:1603.05146] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P.V. Dong and D.T. Huong, Left-right model for dark matter, arXiv:1610.02642 [INSPIRE].
  40. [40]
    M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Unifying left-right symmetry and 331 electroweak theories, Phys. Lett. B 766 (2017) 35 [arXiv:1611.02066] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Hati, S. Patra, M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Towards gauge coupling unification in left-right symmetric SU(3)c × SU(3)L × SU(3)R × U(1)X theories, Phys. Rev. D 96 (2017) 015004 [arXiv:1703.09647] [INSPIRE].
  42. [42]
    C. Kownacki, E. Ma, N. Pollard, O. Popov and M. Zakeri, Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model, Phys. Lett. B 777 (2018) 121 [arXiv:1710.00762] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz and P.S. Rodrigues da Silva, WIMPs in a 3-3-1 model with heavy Sterile neutrinos, Phys. Rev. D 83 (2011) 065024 [arXiv:1010.4097] [INSPIRE].
  44. [44]
    S. Profumo and F.S. Queiroz, Constraining the Z mass in 331 models using direct dark matter detection, Eur. Phys. J. C 74 (2014) 2960 [arXiv:1307.7802] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P.V. Dong, H.T. Hung and T.D. Tham, 3-3-1-1 model for dark matter, Phys. Rev. D 87 (2013) 115003 [arXiv:1305.0369] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.V. Dong, T.P. Nguyen and D.V. Soa, 3-3-1 model with inert scalar triplet, Phys. Rev. D 88 (2013) 095014 [arXiv:1308.4097] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Kelso, C.A. de S. Pires, S. Profumo, F.S. Queiroz and P.S. Rodrigues da Silva, A 331 WIMPy Dark Radiation Model, Eur. Phys. J. C 74 (2014) 2797 [arXiv:1308.6630] [INSPIRE].
  48. [48]
    P.V. Dong, N.T.K. Ngan and D.V. Soa, Simple 3-3-1 model and implication for dark matter, Phys. Rev. D 90 (2014) 075019 [arXiv:1407.3839] [INSPIRE].ADSGoogle Scholar
  49. [49]
    P.V. Dong, C.S. Kim, D.V. Soa and N.T. Thuy, Investigation of Dark Matter in Minimal 3-3-1 Models, Phys. Rev. D 91 (2015) 115019 [arXiv:1501.04385] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Cogollo, A.X. Gonzalez-Morales, F.S. Queiroz and P.R. Teles, Excluding the Light Dark Matter Window of a 331 Model Using LHC and Direct Dark Matter Detection Data, JCAP 11 (2014) 002 [arXiv:1402.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P.V. Dong, D.T. Huong, F.S. Queiroz and N.T. Thuy, Phenomenology of the 3-3-1-1 model, Phys. Rev. D 90 (2014) 075021 [arXiv:1405.2591] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Kelso, H.N. Long, R. Martinez and F.S. Queiroz, Connection of g − 2μ , electroweak, dark matter and collider constraints on 331 models, Phys. Rev. D 90 (2014) 113011 [arXiv:1408.6203] [INSPIRE].
  53. [53]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  54. [54]
    Y. Mambrini, S. Profumo and F.S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807 [arXiv:1508.06635] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    D.T. Huong and P.V. Dong, Neutrino masses and superheavy dark matter in the 3-3-1-1 model, Eur. Phys. J. C 77 (2017) 204 [arXiv:1605.01216] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P.V. Dong, Unifying the electroweak and B-L interactions, Phys. Rev. D 92 (2015) 055026 [arXiv:1505.06469] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D.T. Huong, P.V. Dong, C.S. Kim and N.T. Thuy, Inflation and leptogenesis in the 3-3-1-1 model, Phys. Rev. D 91 (2015) 055023 [arXiv:1501.00543] [INSPIRE].ADSGoogle Scholar
  58. [58]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  59. [59]
    Cherenkov Telescope Array Consortium collaboration, B.S. Acharya et al., Science with the Cherenkov Telescope Array, arXiv:1709.07997 [INSPIRE].
  60. [60]
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva, On the Connection of Gamma-Rays, Dark Matter and Higgs Searches at LHC, Phys. Rev. D 86 (2012) 075011 [arXiv:1206.5779] [INSPIRE].
  61. [61]
    A. Alves, G. Arcadi, P.V. Dong, L. Duarte, F.S. Queiroz and J.W.F. Valle, Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter, Phys. Lett. B 772 (2017) 825 [arXiv:1612.04383] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    DAMIC collaboration, A. Aguilar-Arevalo et al., First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB, Phys. Rev. Lett. 118 (2017) 141803 [arXiv:1611.03066] [INSPIRE].
  63. [63]
    DAMIC collaboration, A. Aguilar-Arevalo et al., Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB, Phys. Rev. D 94 (2016) 082006 [arXiv:1607.07410] [INSPIRE].
  64. [64]
    O. Civitarese, K.J. Fushimi and M.E. Mosquera, Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors, J. Phys. G 43 (2016) 125201 [arXiv:1611.00802] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    PandaX-II collaboration, C. Fu et al., Spin-Dependent Weakly-Interacting-Massive-Particle-Nucleon Cross Section Limits from First Data of PandaX-II Experiment, Phys. Rev. Lett. 118 (2017) 071301 [arXiv:1611.06553] [INSPIRE].
  66. [66]
    XENON100 collaboration, E. Aprile et al., Search for Bosonic Super-WIMP Interactions with the XENON100 Experiment, Phys. Rev. D 96 (2017) 122002 [arXiv:1709.02222] [INSPIRE].
  67. [67]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  68. [68]
    XENON collaboration, E. Aprile et al., Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data, Phys. Rev. Lett. 118 (2017) 101101 [arXiv:1701.00769] [INSPIRE].
  69. [69]
    PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  70. [70]
    SuperCDMS collaboration, R. Agnese et al., Results from the Super Cryogenic Dark Matter Search Experiment at Soudan, Phys. Rev. Lett. 120 (2018) 061802 [arXiv:1708.08869] [INSPIRE].
  71. [71]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F.S. Queiroz and W. Shepherd, New Physics Contributions to the Muon Anomalous Magnetic Moment: A Numerical Code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  75. [75]
    LUX, LZ collaborations, M. Szydagis, The Present and Future of Searching for Dark Matter with LUX and LZ, PoS(ICHEP2016)220 [arXiv:1611.05525] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • P. V. Dong
    • 1
  • D. T. Huong
    • 1
  • Farinaldo S. Queiroz
    • 2
    • 3
  • José W. F. Valle
    • 4
  • C. A. Vaquera-Araujo
    • 5
    • 6
  1. 1.Institute of Physics, Vietnam Academy of Science and TechnologyBa DinhVietnam
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  4. 4.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de Valencia, Edificio de Institutos de PaternaPaternaSpain
  5. 5.Departamento de Física, DCI, Campus LeónUniversidad de GuanajuatoLeónMéxico
  6. 6.Consejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMéxico

Personalised recommendations