Advertisement

New form of the exact NSVZ β-function: the three-loop verification for terms containing Yukawa couplings

  • A. E. Kazantsev
  • V. Yu. Shakhmanov
  • K. V. StepanyantzEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate a recently proposed new form of the exact NSVZ β-function, which relates the β-function to the anomalous dimensions of the quantum gauge superfield, of the Faddeev-Popov ghosts, and of the chiral matter superfields. Namely, for the general renormalizable \( \mathcal{N} \) = 1 supersymmetric gauge theory, regularized by higher covariant derivatives, the sum of all three-loop contributions to the β-function containing the Yukawa couplings is compared with the corresponding two-loop contributions to the anomalous dimensions of the quantum superfields. It is demonstrated that for the considered terms both new and original forms of the NSVZ relation are valid independently of the subtraction scheme if the renormalization group functions are defined in terms of the bare couplings. This result is obtained from the equality relating the loop integrals, which, in turn, follows from the factorization of the integrals for the β-function into integrals of double total derivatives. For the renormalization group functions defined in terms of the renormalized couplings we verify that the NSVZ scheme is obtained with the higher covariant derivative regularization supplemented by the subtraction scheme in which only powers of ln Λ are included into the renormalization constants.

Keywords

Renormalization Regularization and Renormalons Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.R.T. Jones, More on the Axial Anomaly in Supersymmetric Yang-Mills Theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in Supersymmetric Gauge Theories: Instantons Versus Traditional Approach, Phys. Lett. B 166 (1986) 329 [Sov. J. Nucl. Phys. 43 (1986) 294] [Yad. Fiz. 43 (1986) 459] [INSPIRE].
  4. [4]
    M.T. Grisaru and W. Siegel, Supergraphity. 2. Manifestly Covariant Rules and Higher Loop Finiteness, Nucl. Phys. B 201 (1982) 292 [Erratum ibid. B 206 (1982) 496] [INSPIRE].
  5. [5]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys. B 236 (1984) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I.L. Buchbinder, S.M. Kuzenko and B.A. Ovrut, On the D = 4, N = 2 nonrenormalization theorem, Phys. Lett. B 433 (1998) 335 [hep-th/9710142] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, in M.A. Shifman, ITEP lectures on particle physics and field theory, volume 2, (1999) pp. 485-647, hep-th/9902018 [INSPIRE].Google Scholar
  8. [8]
    I.L. Buchbinder and K.V. Stepanyantz, The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories, Nucl. Phys. B 883 (2014) 20 [arXiv:1402.5309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    I.L. Buchbinder, N.G. Pletnev and K.V. Stepanyantz, Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories, Phys. Lett. B 751 (2015) 434 [arXiv:1509.08055] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L. Brink, O. Lindgren and B.E.W. Nilsson, N = 4 Yang-Mills Theory on the Light Cone, Nucl. Phys. B 212 (1983) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [Sov. Phys. JETP 64 (1986) 428] [Zh. Eksp. Teor. Fiz. 91 (1986) 723] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Kraus, C. Rupp and K. Sibold, Supersymmetric Yang-Mills theories with local coupling: The supersymmetric gauge, Nucl. Phys. B 661 (2003) 83 [hep-th/0212064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  17. [17]
    L.V. Avdeev and O.V. Tarasov, The Three Loop β-function in the N = 1, N = 2, N = 4 Supersymmetric Yang-Mills Theories, Phys. Lett. B 112 (1982) 356 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Jack, D.R.T. Jones and A. Pickering, The connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].
  21. [21]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    I. Jack, D.R.T. Jones, P. Kant and L. Mihaila, The four-loop DRED gauge β-function and fermion mass anomalous dimension for general gauge groups, JHEP 09 (2007) 058 [arXiv:0707.3055] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.L. Kataev and K.V. Stepanyantz, The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions, Theor. Math. Phys. 181 (2014) 1531 [arXiv:1405.7598] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13 (1972) 1064 [Teor. Mat. Fiz. 13 (1972) 174].ADSCrossRefGoogle Scholar
  27. [27]
    V.K. Krivoshchekov, Invariant Regularizations for Supersymmetric Gauge Theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P.C. West, Higher Derivative Regulation of Supersymmetric Theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, On the Scope of Supersymmetric Dimensional Regularization, Phys. Lett. B 105 (1981) 272 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.V. Avdeev, Noninvariance of Regularization by Dimensional Reduction: An Explicit Example of Supersymmetry Breaking, Phys. Lett. B 117 (1982) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L.V. Avdeev and A.A. Vladimirov, Dimensional Regularization and Supersymmetry, Nucl. Phys. B 219 (1983) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for \( \mathcal{N} \) = 1 SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].
  34. [34]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.S. Aleshin, A.L. Kataev and K.V. Stepanyantz, Structure of three-loop contributions to the β-function of \( \mathcal{N} \) = 1 supersymmetric QED with N f flavors regularized by the dimensional reduction, JETP Lett. 103 (2016) 77 [arXiv:1511.05675] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.S. Aleshin, I.O. Goriachuk, A.L. Kataev and K.V. Stepanyantz, The NSVZ scheme for \( \mathcal{N} \) =1 SQED with N f flavors, regularized by the dimensional reduction, in the three-loop approximation, Phys. Lett. B 764 (2017) 222 [arXiv:1610.08034] [INSPIRE].
  37. [37]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    K.V. Stepanyantz, The NSVZ β-function and the Schwinger-Dyson equations for \( \mathcal{N} \) = 1 SQED with N f flavors, regularized by higher derivatives, JHEP 08 (2014) 096 [arXiv:1404.6717] [INSPIRE].
  39. [39]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [Teor. Mat. Fiz. 140 (2004) 430] [hep-th/0304083] [INSPIRE].
  40. [40]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4 − D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Gell-Mann-Low function in supersymmetric electrodynamics, JETP Lett. 42 (1985) 224 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 182] [INSPIRE].
  42. [42]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function in supersymmetric electrodynamics, Phys. Lett. B 166 (1986) 334 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.E. Kazantsev and K.V. Stepanyantz, Relation between two-point Green’s functions of \( \mathcal{N} \) =1 SQED with N f flavors, regularized by higher derivatives, in the three-loop approximation, J. Exp. Theor. Phys. 120 (2015) 618 [Zh. Eksp. Teor. Fiz. 147 (2015) 714] [arXiv:1410.1133] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.L. Adler, Some simple vacuum polarization phenomenology: e + e hadrons: the muonic-atom x-ray discrepancy and g μ− 2, Phys. Rev. D 10 (1974) 3714 [INSPIRE].
  45. [45]
    M. Shifman and K. Stepanyantz, Exact Adler Function in Supersymmetric QCD, Phys. Rev. Lett. 114 (2015) 051601 [arXiv:1412.3382] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Shifman and K.V. Stepanyantz, Derivation of the exact expression for the D function in N =1 SQCD, Phys. Rev. D 91 (2015) 105008 [arXiv:1502.06655] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    I.V. Nartsev and K.V. Stepanyantz, Exact renormalization of the photino mass in softly broken \( \mathcal{N} \) = 1 SQED with N f flavors regularized by higher derivatives, JHEP 04 (2017) 047 [arXiv:1610.01280] [INSPIRE].
  48. [48]
    J. Hisano and M.A. Shifman, Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories, Phys. Rev. D 56 (1997) 5475 [hep-ph/9705417] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I. Jack and D.R.T. Jones, The Gaugino β-function, Phys. Lett. B 415 (1997) 383 [hep-ph/9709364] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Renormalizations in softly broken SUSY gauge theories, Nucl. Phys. B 510 (1998) 289 [hep-ph/9709397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K.V. Stepanyantz, Quantum corrections in N = 1 supersymmetric theories with cubic superpotential, regularized by higher covariant derivatives, Phys. Part. Nucl. Lett. 8 (2011) 321 [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  54. [54]
    V. Yu. Shakhmanov and K.V. Stepanyantz, Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization, Nucl. Phys. B 920 (2017) 345 [arXiv:1703.10569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    K.V. Stepanyantz, Non-renormalization of the \( V\overline{c}c \) -vertices in \( \mathcal{N} \) = 1 supersymmetric theories, Nucl. Phys. B 909 (2016) 316 [arXiv:1603.04801] [INSPIRE].
  56. [56]
    V. Yu. Shakhmanov and K.V. Stepanyantz, New form of the NSVZ relation at the two-loop level, Phys. Lett. B 776 (2018) 417 [arXiv:1711.03899] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A.A. Slavnov and K.V. Stepanyantz, Universal invariant renormalization of supersymmetric Yang-Mills theory, Theor. Math. Phys. 139 (2004) 599 [Teor. Mat. Fiz. 139 (2004) 179] [hep-th/0305128] [INSPIRE].
  58. [58]
    A.A. Vladimirov, Renormalization Group Equations in Different Approaches, Theor. Math. Phys. 25 (1976) 1170 [Teor. Mat. Fiz. 25 (1975) 335] [INSPIRE].
  59. [59]
    K.V. Stepanyantz, Structure of quantum corrections in \( \mathcal{N} \) = 1 supersymmetric gauge theories, arXiv:1711.09194, [INSPIRE].
  60. [60]
    A.L. Kataev, A.E. Kazantsev and K.V. Stepanyantz, The Adler D-function for \( \mathcal{N} \) = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation, Nucl. Phys. B 926 (2018) 295 [arXiv:1710.03941] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    I.V. Nartsev and K.V. Stepanyantz, NSVZ-like scheme for the photino mass in softly broken \( \mathcal{N} \) = 1 SQED regularized by higher derivatives, JETP Lett. 105 (2017) 69 [arXiv:1611.09091] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  63. [63]
    P.C. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore (1990).CrossRefGoogle Scholar
  64. [64]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP, Bristol, U.K., (1998).Google Scholar
  65. [65]
    B.S. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York, U.S.A., (1965), [Conf. Proc. C 630701 (1964) 585] [Les Houches Lect. Notes 13 (1964) 585] [INSPIRE].
  66. [66]
    L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].MathSciNetGoogle Scholar
  68. [68]
    S.S. Aleshin, A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization, JHEP 05 (2016) 014 [arXiv:1603.04347] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    A.A. Slavnov, Ward Identities in Gauge Theories, Theor. Math. Phys. 10 (1972) 99 [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys. 50 (1980) 1 [INSPIRE].
  72. [72]
    A.A. Slavnov, The Pauli-Villars Regularization for Nonabelian Gauge Theories, Theor. Math. Phys. 33 (1977) 977 [Teor. Mat. Fiz. 33 (1977) 210].Google Scholar
  73. [73]
    C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble Model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    I.V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism, arXiv:0812.0580 [INSPIRE].
  75. [75]
    S. Ferrara and O. Piguet, Perturbation Theory and Renormalization of Supersymmetric Yang-Mills Theories, Nucl. Phys. B 93 (1975) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    O. Piguet and K. Sibold, Renormalization of N = 1 Supersymmetrical Yang-Mills Theories. 2. The Radiative Corrections, Nucl. Phys. B 197 (1982) 272 [INSPIRE].
  77. [77]
    J.W. Juer and D. Storey, Nonlinear Renormalization in Superfield Gauge Theories, Phys. Lett. B 119 (1982) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J.W. Juer and D. Storey, One Loop Renormalization of Superfield Yang-Mills Theories, Nucl. Phys. B 216 (1983) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    O. Piguet and K. Sibold, The Supercurrent in N = 1 Supersymmetrical Yang-Mills Theories. 1. The Classical Case, Nucl. Phys. B 196 (1982) 428 [INSPIRE].
  80. [80]
    O. Piguet and K. Sibold, Gauge Independence in N = 1 Supersymmetric Yang-Mills Theories, Nucl. Phys. B 248 (1984) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M.T. Grisaru, W. Siegel and M. Roček, Improved Methods for Supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    A. Soloshenko and K. Stepanyantz, Two loop renormalization of N = 1 supersymmetric electrodynamics, regularized by higher derivatives, hep-th/0203118 [INSPIRE].
  83. [83]
    A.A. Soloshenko and K.V. Stepanyants, Two-loop anomalous dimension of N = 1 supersymmetric quantum electrodynamics regularized using higher covariant derivatives, Theor. Math. Phys. 134 (2003) 377 [Teor. Mat. Fiz. 134 (2003) 430] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physical Faculty, Department of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations