Advertisement

On geometric classification of 5d SCFTs

  • Patrick Jefferson
  • Sheldon Katz
  • Hee-Cheol KimEmail author
  • Cumrun Vafa
Open Access
Regular Article - Theoretical Physics

Abstract

We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.

Keywords

Conformal Field Models in String Theory Differential and Algebraic Geometry Field Theories in Higher Dimensions Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles U.S.A., 13-18 March 1995, pg. 501 [hep-th/9507121] [INSPIRE].
  2. [2]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  3. [3]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Bhardwaj, Classification of 6d N = (1, 0) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].
  8. [8]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].
  10. [10]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].
  13. [13]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
  14. [14]
    Y. Tachikawa, Frozen singularities in M and F-theory, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Bhardwaj, D. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, in progress.Google Scholar
  16. [16]
    F. Apruzzi, J.J. Heckman and T. Rudelius, Green-Schwarz automorphisms and 6D SCFTs, JHEP 02 (2018) 157 [arXiv:1707.06242] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the defect group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].
  18. [18]
    M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and phases of 5D theories, JHEP 09 (2017) 147 [arXiv:1703.02981] [INSPIRE].
  19. [19]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE].
  20. [20]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d N = 1 theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].
  23. [23]
    K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].
  24. [24]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional N = 1 SCFT, JHEP 06 (2017) 134 [arXiv:1704.00799] [INSPIRE].
  26. [26]
    H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen (in German), Math. Ann. 146 (1962) 331.Google Scholar
  27. [27]
    A. Beauville ed., Canonical 3-folds, Sijthoff and Noordhoff, The Netherlands, (1979).Google Scholar
  28. [28]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York U.S.A., (1978).Google Scholar
  29. [29]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Katz and D.R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Alg. Geom. 1 (1992) 449 [alg-geom/9202002].MathSciNetzbMATHGoogle Scholar
  31. [31]
    D.-E. Diaconescu and R. Entin, Calabi-Yau spaces and five-dimensional field theories with exceptional gauge symmetry, Nucl. Phys. B 538 (1999) 451 [hep-th/9807170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].
  33. [33]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs, JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].
  34. [34]
    A. Iqbal, A. Neitzke and C. Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769 [hep-th/0111068] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d SCFT, JHEP 01 (2017) 093 [arXiv:1607.07786] [INSPIRE].
  36. [36]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].
  37. [37]
    M. Nagata, On rational surfaces, II, Mem. College Sci. Univ. Kyoto A 33 (1960) 271.MathSciNetCrossRefGoogle Scholar
  38. [38]
    V. Kac, Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge U.K., (1990).Google Scholar
  39. [39]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Patrick Jefferson
    • 1
  • Sheldon Katz
    • 2
  • Hee-Cheol Kim
    • 1
    • 3
    Email author
  • Cumrun Vafa
    • 1
  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  2. 2.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  3. 3.Department of Physics, POSTECHPohangKorea

Personalised recommendations