On actions for (entangling) surfaces and DCFTs

Abstract

The dynamics of surfaces and interfaces describe many physical systems, including fluid membranes, entanglement entropy and the coupling of defects to quantum field theories. Based on the formulation of submanifold calculus developed by Carter, we introduce a new variational principle for (entangling) surfaces. This principle captures all diffeomorphism constraints on surface/interface actions and their associated spacetime stress tensor. The different couplings to the geometric tensors appearing in the surface action are interpreted in terms of response coefficients within elasticity theory. An example of a surface action with edges at the two-derivative level is studied, including both the parity-even and parity-odd sectors. Its conformally invariant counterpart restricts the type of conformal anomalies that can appear in two-dimensional submanifolds with boundaries. Analogously to hydrodynamics, it is shown that classification methods can be used to constrain the stress tensor of (entangling) surfaces at a given order in derivatives. This analysis reveals a purely geometric parity-odd contribution to the Young modulus of a thin elastic membrane. Extending this novel variational principle to BCFTs and DCFTs in curved spacetimes allows to obtain the Ward identities for diffeomorphism and Weyl transformations. In this context, we provide a formal derivation of the contact terms in the stress tensor and of the displacement operator for a broad class of actions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Guven and P. Vázquez-Montejo, The Geometry of Fluid Membranes: Variational Principles, Symmetries and Conservation Laws, Springer International Publishing, Cham (2018), pp. 167-219.

    Google Scholar 

  2. [2]

    D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Group Flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. [5]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    B. Carter, Brane dynamics for treatment of cosmic strings and vortons, in Recent developments in gravitation and mathematical physics. Proceedings, 2nd Mexican School, Tlaxcala, Mexico, December 1-7, 1996 (1997) [hep-th/9705172] [INSPIRE].

  8. [8]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP 09 (2013) 073 [arXiv:1304.7773] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP 06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    C.V. Johnson, D-brane primer, in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder, U.S.A., May 31-June 25, 1999, pp. 129-350, DOI:https://doi.org/10.1142/9789812799630_0002 [hep-th/0007170] [INSPIRE].

  13. [13]

    B. Carter, Outer curvature and conformal geometry of an imbedding, J. Geom. Phys. 8 (1992) 53 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    B. Carter, Perturbation dynamics for membranes and strings governed by Dirac Goto Nambu action in curved space, Phys. Rev. D 48 (1993) 4835 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    X. Dong and A. Lewkowycz, Entropy, Extremality, Euclidean Variations and the Equations of Motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

  23. [23]

    L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N} \) = 4 SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    L. Rastelli and X. Zhou, The Mellin Formalism for Boundary CFT d, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].

  26. [26]

    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. [28]

    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    J. Erdmenger, M. Flory and M.-N. Newrzella, Bending branes for DCFT in two dimensions, JHEP 01 (2015) 058 [arXiv:1410.7811] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella and J.M.S. Wu, Entanglement Entropy in a Holographic Kondo Model, Fortsch. Phys. 64 (2016) 109 [arXiv:1511.03666] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and Integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. [33]

    I. Buhl-Mortensen, M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, One-loop one-point functions in gauge-gravity dualities with defects, Phys. Rev. Lett. 117 (2016) 231603 [arXiv:1606.01886] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    M. de Leeuw, A.C. Ipsen, C. Kristjansen, K.E. Vardinghus and M. Wilhelm, Two-point functions in AdS/dCFT and the boundary conformal bootstrap equations, JHEP 08 (2017) 020 [arXiv:1705.03898] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. [35]

    P. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26 (1970) 61.

    Article  Google Scholar 

  36. [36]

    W. Helfrich, Elastic Properties of Lipid Bilayers — Theory and Possible Experiments, Z. Naturforsch. C 28 (1973) 693.

    Article  Google Scholar 

  37. [37]

    U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys. 46 (1997) 13.

    ADS  Article  Google Scholar 

  38. [38]

    Z.C. Tu and Z.C. Ou-Yang, A geometric theory on the elasticity of bio-membranes, J. Phys. A 37 (2004) 11407.

    ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    L. Landau and E.M. Lifshitz, Theory of elasticity, Course of Theoretical Physics 7 (1959) 134.

    MathSciNet  Google Scholar 

  40. [40]

    J. Guven, Perturbations of a topological defect as a theory of coupled scalar fields in curved space, Phys. Rev. D 48 (1993) 5562 [gr-qc/9304033] [INSPIRE].

  41. [41]

    R. Capovilla and J. Guven, Geometry of deformations of relativistic membranes, Phys. Rev. D 51 (1995) 6736 [gr-qc/9411060] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    J. Guven, Membrane geometry with auxiliary variables and quadratic constraints, J. Phys. A 37 (2004) L313 [math-ph/0404064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    J. Guven and P. Vazquez-Montejo, Metric variations become a surface, Phys. Lett. A 377 (2013) 1507 [arXiv:1211.7154] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    G. Arreaga, R. Capovilla and J. Guven, Noether currents for bosonic branes, Annals Phys. 279 (2000) 126 [hep-th/0002088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys. 931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  46. [46]

    O.-Y. Zhong-can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A 39 (1989) 5280.

    ADS  Article  Google Scholar 

  47. [47]

    C. Charmousis and R. Zegers, Matching conditions for a brane of arbitrary codimension, JHEP 08 (2005) 075 [hep-th/0502170] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    P. Fonda, V. Jejjala and A. Veliz-Osorio, On the Shape of Things: From holography to elastica, Annals Phys. 385 (2017) 358 [arXiv:1611.03462] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    R.A. Battye and B. Carter, Gravitational perturbations of relativistic membranes and strings, Phys. Lett. B 357 (1995) 29 [hep-ph/9508300] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    R. Capovilla and J. Guven, Large deformations of relativistic membranes: A Generalization of the Raychaudhuri equations, Phys. Rev. D 52 (1995) 1072 [gr-qc/9411061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    B. Carter, Amalgamated Codazzi-Raychaudhuri identity for foliation, Contemp. Math. 203 (1997) 207 [hep-th/9705083] [INSPIRE].

    Article  Google Scholar 

  53. [53]

    R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept. 633 (2016) 1 [arXiv:1601.04914] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    Y. Aminov, The Geometry of Submanifolds, Taylor & Francis (2001).

  55. [55]

    A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A 209 (1951) 248 [INSPIRE].

  56. [56]

    J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP 10 (2014) 063 [arXiv:1406.7813] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. [58]

    M. Vasilic and M. Vojinovic, Classical spinning branes in curved backgrounds, JHEP 07 (2007) 028 [arXiv:0707.3395] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP 09 (2014) 047 [arXiv:1312.0597] [INSPIRE].

  60. [60]

    J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP 06 (2017) 090 [arXiv:1612.08088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    M. Cvitan, P. Dominis Prester, S. Pallua, I. Smolić and T. Štemberga, Parity-odd surface anomalies and correlation functions on conical defects, arXiv:1503.06196 [INSPIRE].

  64. [64]

    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    T. Ali, S. Shajidul Haque and J. Murugan, Holographic Entanglement Entropy for Gravitational Anomaly in Four Dimensions, arXiv:1611.03415 [INSPIRE].

  66. [66]

    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. [67]

    C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP 08 (2016) 165 [arXiv:1604.06808] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  69. [69]

    T. Azeyanagi, R. Loganayagam and G.S. Ng, Holographic Entanglement for Chern-Simons Terms, JHEP 02 (2017) 001 [arXiv:1507.02298] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    E. Caceres, R. Mohan and P.H. Nguyen, On holographic entanglement entropy of Horndeski black holes, JHEP 10 (2017) 145 [arXiv:1707.06322] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay Armas.

Additional information

ArXiv ePrint: 1709.06766

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armas, J., Tarrío, J. On actions for (entangling) surfaces and DCFTs. J. High Energ. Phys. 2018, 100 (2018). https://doi.org/10.1007/JHEP04(2018)100

Download citation

Keywords

  • Brane Dynamics in Gauge Theories
  • D-branes
  • p-branes