Signatures of a light sterile neutrino in T2HK

  • Sanjib Kumar AgarwallaEmail author
  • Sabya Sachi Chatterjee
  • Antonio Palazzo
Open Access
Regular Article - Theoretical Physics


We investigate the performance of T2HK in the presence of a light eV scale sterile neutrino. We study in detail its influence in resolving fundamental issues like mass hierarchy, CP-violation (CPV) induced by the standard CP-phase δ13 and new CP-phase δ14, and the octant ambiguity of θ23. We show for the first time in detail that due to the impressive energy reconstruction capabilities of T2HK, the available spectral information plays an important role to enhance the mass hierarchy discovery reach of this experiment in 3ν framework and also to keep it almost intact even in 4ν scheme. This feature is also of the utmost importance in establishing the CPV due to δ14. As far as the sensitivity to CPV due to δ13 is concerned, it does not change much going from 3ν to 4ν case. We also examine the reconstruction capability of the two phases δ13 and δ14, and find that the typical 1σ uncertainty on δ13 (δ14) in T2HK is ∼ 150 (300). While determining the octant of θ23, we face a complete loss of sensitivity for unfavorable combinations of unknown δ13 and δ14.


Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
  2. [2]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Lasserre, Light Sterile Neutrinos in Particle Physics: Experimental Status, Phys. Dark Univ. 4 (2014) 81 [arXiv:1404.7352] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Pascoli and T. Schwetz, Prospects for neutrino oscillation physics, Adv. High Energy Phys. 2013 (2013) 503401.CrossRefGoogle Scholar
  7. [7]
    S.K. Agarwalla, S. Prakash and S. Uma Sankar, Exploring the three flavor effects with future superbeams using liquid argon detectors, JHEP 03 (2014) 087 [arXiv:1304.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.K. Agarwalla, Physics Potential of Long-Baseline Experiments, Adv. High Energy Phys. 2014 (2014) 457803 [arXiv:1401.4705] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    G.J. Feldman, J. Hartnell and T. Kobayashi, Long-baseline neutrino oscillation experiments, Adv. High Energy Phys. 2013 (2013) 475749 [arXiv:1210.1778] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    L. Stanco, A View of Neutrino Studies with the Next Generation Facilities, Rev. Phys. 1 (2016) 90 [arXiv:1511.09409] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    D. Hollander and I. Mocioiu, Minimal 3+2 sterile neutrino model at LBNE, Phys. Rev. D 91 (2015) 013002 [arXiv:1408.1749] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Coloma, D.V. Forero and S.J. Parke, DUNE sensitivities to the mixing between sterile and tau neutrinos, arXiv:1707.05348 [INSPIRE].
  15. [15]
    J. Tang, Y. Zhang and Y.-F. Li, Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities, Phys. Lett. B 774 (2017) 217 [arXiv:1708.04909] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K.J. Kelly, Searches for new physics at the Hyper-Kamiokande experiment, Phys. Rev. D 95 (2017) 115009 [arXiv:1703.00448] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Choubey, D. Dutta and D. Pramanik, Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK, Phys. Rev. D 96 (2017) 056026 [arXiv:1704.07269] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Choubey, D. Dutta and D. Pramanik, Measuring the Sterile Neutrino CP Phase at DUNE and T2HK, arXiv:1711.07464 [INSPIRE].
  19. [19]
    A. Donini and D. Meloni, The 2+2 and 3+1 four family neutrino mixing at the neutrino factory, Eur. Phys. J. C 22 (2001) 179 [hep-ph/0105089] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Donini, M. Lusignoli and D. Meloni, Telling three neutrinos from four neutrinos at the neutrino factory, Nucl. Phys. B 624 (2002) 405 [hep-ph/0107231] [INSPIRE].
  21. [21]
    A. Donini, M. Maltoni, D. Meloni, P. Migliozzi and F. Terranova, 3+1 sterile neutrinos at the CNGS, JHEP 12 (2007) 013 [arXiv:0704.0388] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Dighe and S. Ray, Signatures of heavy sterile neutrinos at long baseline experiments, Phys. Rev. D 76 (2007) 113001 [arXiv:0709.0383] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Donini, K.-i. Fuki, J. Lopez-Pavon, D. Meloni and O. Yasuda, The Discovery channel at the Neutrino Factory: ν μν τ pointing to sterile neutrinos, JHEP 08 (2009) 041 [arXiv:0812.3703] [INSPIRE].
  24. [24]
    O. Yasuda, Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, in Proceedings of 5th International Conference: Physics beyond the standard models of particles, cosmology and astrophysics, Cape Town, South Africa, 1 - 6 February 2010, pg. 300 [arXiv:1004.2388] [INSPIRE].
  25. [25]
    D. Meloni, J. Tang and W. Winter, Sterile neutrinos beyond LSND at the Neutrino Factory, Phys. Rev. D 82 (2010) 093008 [arXiv:1007.2419] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Bhattacharya, A.M. Thalapillil and C.E.M. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE].
  27. [27]
    A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3+2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2017, arXiv:1708.01186 [INSPIRE].
  29. [29]
    F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Capozzi, C. Giunti, M. Laveder and A. Palazzo, Joint short- and long-baseline constraints on light sterile neutrinos, Phys. Rev. D 95 (2017) 033006 [arXiv:1612.07764] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Dentler, Á. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].
  35. [35]
    Hyper-Kamiokande Working Group collaboration, K. Abe et al., A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
  36. [36]
    Hyper-Kamiokande Proto-Collaboration collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  37. [37]
    A. Para and M. Szleper, Neutrino oscillations experiments using off-axis NuMI beam, hep-ex/0110032 [INSPIRE].
  38. [38]
    Hyper-Kamiokande proto- collaboration, K. Abe et al., Physics Potentials with the Second Hyper-Kamiokande Detector in Korea, arXiv:1611.06118 [INSPIRE].
  39. [39]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.K. Agarwalla, S.S. Chatterjee, A. Dasgupta and A. Palazzo, Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino, JHEP 02 (2016) 111 [arXiv:1601.05995] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Daya Bay collaboration, J. Ling, Precision Measurement of sin2(2θ 13) andm ee| from Daya Bay, PoS(ICHEP2016)467.
  43. [43]
    JUNO collaboration, F. An et al., Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
  44. [44]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter. 25 (1981) 297.ADSCrossRefGoogle Scholar
  45. [45]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  46. [46]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [INSPIRE].
  47. [47]
    E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a neutrino mass hierarchy determination, JHEP 01 (2014) 095 [arXiv:1305.5150] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Blennow, On the Bayesian approach to neutrino mass ordering, JHEP 01 (2014) 139 [arXiv:1311.3183] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, JHEP 09 (2015) 016 [arXiv:1506.07685] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    J. Liao, D. Marfatia and K. Whisnant, Nonstandard neutrino interactions at DUNE, T2HK and T2HKK, JHEP 01 (2017) 071 [arXiv:1612.01443] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Fukasawa, M. Ghosh and O. Yasuda, Complementarity Between Hyperkamiokande and DUNE in Determining Neutrino Oscillation Parameters, Nucl. Phys. B 918 (2017) 337 [arXiv:1607.03758] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Sensitivities and synergies of DUNE and T2HK, Phys. Rev. D 96 (2017) 033003 [arXiv:1612.07275] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Ghosh and O. Yasuda, Effect of systematics in the T2HK, T2HKK and DUNE experiments, Phys. Rev. D 96 (2017) 013001 [arXiv:1702.06482] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.K. Raut, Matter effects at the T2HK and T2HKK experiments, Phys. Rev. D 96 (2017) 075029 [arXiv:1703.07136] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S.K. Agarwalla, M. Ghosh and S.K. Raut, A hybrid setup for fundamental unknowns in neutrino oscillations using T2HK (ν) and μ-DAR ( \( \overline{\nu} \) ), JHEP 05 (2017) 115 [arXiv:1704.06116] [INSPIRE].
  57. [57]
    K. Chakraborty, K.N. Deepthi and S. Goswami, Spotlighting the sensitivities of T2HK,T2HKK and DUNE, arXiv:1711.11107 [INSPIRE].
  58. [58]
    S. C, K.N. Deepthi and R. Mohanta, A comprehensive study of the discovery potential of NOvA, T2K and T2HK experiments, Adv. High Energy Phys. 2016 (2016) 9139402 [arXiv:1408.6071] [INSPIRE].
  59. [59]
    Hyper-Kamiokande Proto collaboration, M. Yokoyama, The Hyper-Kamiokande Experiment, in Proceedings of Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12 - 14 December 2016 [arXiv:1705.00306] [INSPIRE].
  60. [60]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Physics Reach of DUNE with a Light Sterile Neutrino, JHEP 09 (2016) 016 [arXiv:1603.03759] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Octant of θ 23 in danger with a light sterile neutrino, Phys. Rev. Lett. 118 (2017) 031804 [arXiv:1605.04299] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
    • 2
    • 3
    Email author
  • Sabya Sachi Chatterjee
    • 1
    • 2
  • Antonio Palazzo
    • 4
    • 5
  1. 1.Institute of Physics Bhubaneswar, Sachivalaya Marg, Sainik School PostBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  4. 4.Dipartimento Interateneo di Fisica “Michelangelo Merlin”Università degli Studi di Bari Aldo MoroBariItaly
  5. 5.Istituto Nazionale di Fisica Nucleare (INFN), Sezione di BariBariItaly

Personalised recommendations